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Given three (straight) sticks, when can they be used to make a triangle? Given 

six (straight) sticks, when can they be used to make a tetrahedron?

The triangle is the simplest example of an important kind of 2-dimensional 

geometrical structure - the polygon. The tetrahedron is the simplest of an 

important kind of 3-dimensional geometrical structure - the polyhedron. In 

this note we will look at how some ideas involving basic combinatorics, graph 

theory, and geometry can be used to help get insight into the thinking about 

the geometry of the tetrahedron and the transition between thinking about 2-

dimensional problems to thinking about 3-dimensional problems. Along the 

way we will see lots of opportunities to provide students with problems for 

thinking about geometrical questions which have not been well explored. The 

"methods" here develop further the ideas for classifying quadrilaterals 

previously discussed in Alonso and Malkevitch [2,3] which in turn built on work 

of Branko Grünbaum [4}. We will try to keep the development of the ideas as 

informal as possible. By a triangle we will mean 3 points in the plane not all on 

a line. By a tetrahedron we will mean 4 points in 3-space not all situated in one 

plane. We shall be interested in two types of questions. When does a triangle 

or tetrahedron with specific edge lengths exist? How can we classify triangles 

and tetrahedra in a natural way?

In this note the diagrams we draw will not be drawn to scale and are designed 

to help one in an informal way think about the objects involved. 

Figure 1 shows a general triangle and one with specific "proposed" lengths.
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Figure 1a (A labeled triangle with general side lengths)
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Figure 1b (A triangle with side lengths 7, 8, and 12)

Does such a triangle really exist physically? The answer is given by the triangle 

inequality. If the sum of any two of the side lengths for the triangle exceeds 

the length of the third side, the triangle exists. Thus, there is a physical 

triangle with the lengths shown in Figure 1b. If one interchanges two of the 

lengths there is still a physical triangle with these lengths; all of the triangles 

with any of the 6 ways (the first side length can be chosen in 3 ways, the next 

in 2, and the last in one way) to label the edges in Figure 1b exist and are 

congruent to each other! We will see that nothing this "nice" happens for 

tetrahedra. Note that if one has three numbers where the sum of two equals 

the length of the third, 7, 8, and 15, one can find three points on a line where 

these lengths are the distance between the pairs of the points. We have 3 

collinear points, which can be thought of as a "degenerate" triangle. The 

definition of triangle is not "continuous" with respect to moving the point A 

with respect to side BC, a very small change can take a triangle and transform 

it to a degenerate one.



What different kinds of triangles are there? One approach to this is to use 

the notion of a partition of an integer n. The partitions of n are the ways that 

one can write n as the sum of non-negative integers. The partitions of 3 are 

{3}, {2, 1}, and {1, 1, 1}. Note that since we are using set notation, {2, 1} and {1, 

2} are considered the same partition of 3. We will interpret {2, 1} as meaning 

we have a triangle where two edges have equal length, and the third side of 

the triangle has a different length from the other two. These partition classes 

correspond to the more familiar designations of equilateral triangle (E), 

isosceles triangle (I) and scalene triangle (S). We will use these terms when we 

classify tetrahedra, whose faces are, after all, four triangles. For details about 

how to use partitions to classify convex quadrilaterals and related problems, 

see Alonso [1] and Alonso and Malkevitch [2, 3].

Figure 2a and Figure 2 show two ways to represent a tetrahedron on a flat 

piece of paper. While the hidden line drawing in Figure 2a is more suggestive 

of something 3-dimensional, we will rely on the style of diagram in Figure 2b 

because of its connection with graph theory. 

Figure 2a
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Figure 2 (Two ways to represent a 3-dimensional tetrahedron in the plane)

Given an ordered sextuple of 6 numbers (repeats allowed) we will use the 

notation S(a,b,c,d,e,f) to denote the way of labeling the edges as shown in 

Figure 2b. To illustrate how this notation works, the potential tetrahedron in 

Figure 3a is denoted S(11,5,12,7,8,9), while S(11,8,12,7,5,9) would give rise to 

the drawing in Figure 3b.
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Figure 3  (Two potential tetrahedra with the same edge lengths but differently 

configured)

The two labelings are related by interchanging the lengths on a pair of edges. 

For a specific choice of 6 values, will an actual tetrahedron exist? What is the 

largest number of incongruent tetrahedra with 6 different edge lengths that 

there can be if there is at least one physical tetrahedron with these edge 

lengths? Before addressing these questions, note that if all of the 6 values a, 

b, c, d, e, and f are different, there are 720 different ways to label the edges 

in Figure 2b. Could all of these 720 different labelings lead to 720 non-

congruent tetrahedra? Viewed as a graph - a diagram consisting of vertices 

(dots) and edges (line segments) drawn without edges crossing in the plane, 

the diagram in Figure 2b is the complete graph (every vertex joined to every 

other) on 4 vertices. This graph has 4 vertices, 4 faces (regions), and 6 edges. 

For this graph there are 24 ways (4!) to map the vertices to themselves which 

preserve the edges. These 24 automorphisms of the graph (mappings of the 

vertices to vertices that preserve edges) mean that for each labeling of 

Figure 2b there are 24 other labels which give rise to exactly the same set of 

faces.

Problem 1:



Find the 24 other ways to label the edges of the diagram in Figure 1b with the 

letters a, b, c, d, e, and f so that one gets the same set of faces for the 

tetrahedron that this diagram has the potential to represent.

Dividing 720 by 24 means that there can be at most 30 different (incongruent) 

tetrahedra with the same collection of 6 different edge lengths. (Is this the 

number you thought when the question was first raised above?)

Problem 2:

Verify that it is possible to choose 6 different integer lengths and construct 

30 incongruent tetrahedra with these lengths. (For the very patient you might 

construct a complete set of these 30 tetrahedra using a scale for the edge 

lengths that produces nice physical models!) Note that for each of the 

different 30 possible tetrahedra there are 24 different ways to label the 

edges in Figure 2b to obtain the same set of faces with the given edge 

lengths.

Problem 3:

While the lengths as shown in Figure 3a allow one to construct a physical 

tetrahedron, can you see a simple argument that show there is no physical 

tetrahedron with the lengths shown in Figure 3b?

Now, what about how to tell when a tetrahedron exists, given a proposed 

collection of lengths for its six edges. In light of the fact that one can't have a 

triangle unless the strict triangle inequality holds, a natural necessary 

condition for a tetrahedron to exist is that for the edges that form the 

triangular faces one would want the triangle inequality to hold. Perhaps 

surprisingly, it is not hard to find examples where the triangle inequality holds 

for the edges forming each of the four faces of the proposed tetrahedron 

but the tetrahedron does not exist.

For example, S(4, 4, 4, 7, 4, 4), even though the triangle inequality holds for 

every triple of three numbers, when used to label the diagram in Figure 2b, 

does not exist. To see this provides a non-standard opportunity to look at 

some geometry and trigonometry. From Figure 4 we see that we have two 

equilateral triangles that would share an edge. If we think of two such 

triangles as lying flat in a plane, we can ask if we can flex the triangles about 

the edge CB so that we get a tetrahedron with the required edge lengths 4, 4, 

4, 4, 4, and 7. 
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Figure 4 (Diagram to help show that there is no tetrahedron with five edges of 

length 4 and one of length 7)

If AB, AC, BC, DC, and BD are all of length 4, what is the length of AD? We can 

figure this out in a variety of ways, but let us use the law of cosines! We can 

compute the length of AD in terms of AC, DC and the angle at C by using 

triangle ADC. What is the angle at C? Since two equilateral triangles share the 

edge CB, the angle at C is 120 degrees. Thus, we can write, using the law of 

cosines, that:

AD2 = AC2 + CD2 -2(AC)(CD)cos(120º).  Now AC is 4, CD is 4 and cos(120) 

equals -(1/2).  Thus, AD2 = 16 + 16 + (4)(4) = 48. Hence, AD = 4!3 which is less 

then 7. 

So while it is tempting to think that one can construct a tetrahedron from the 

"flat" triangles ABC and BDC in Figure 4 by flexing these two triangles along 

the line CB that they share so that A and D leave the plane of the triangle and 

a tetrahedron is formed, this will not work because this process will shorten 

the length of AD which is already too long at 7 units to fit! (If one tries to 

make a model of this "tetrahedron" using sticks, one can make something 

three dimensional only by having the 7 unit "strut" bend so that it can be 

forced into place with the sticks of length 4.)

So given 6 lengths is there some "easy" way to tell if there is a tetrahedron 

with these lengths, given their relative positions as in Figure 2b? The answer is 

"yes." Arthur Cayley and Karl Menger (with improvements by others) have 



shown how an answer can be determined by calculating a particular 

determinant, together with checking that the faces of the resulting potential 

tetrahedron would obey the strict triangle inequality. In essence these 

determinant calculations show that a tetrahedron exists by finding its volume, 

and as a fringe benefit of this approach, when the determinant is zero, it 

means that one has 4 points that lie in a single plane, and, thus, form a 

degenerate tetrahedron. Details can be found in Mussa [5] and Worth and 

Dreiding [6]. However, there are many natural questions that can studied by K-

12 students to explore the "space" of 6-tuples that lead to tetrahedra. You 

can experiment by making models or using commercially available kits which 

allow one to make polyhedra with sticks of different lengths. It may be helpful 

to state a sufficient condition for the existence of a tetrahedron when the 

lengths for its edges are as shown in Figure 2b. We will say that a set of CT of 

positive integers is completely tetrahedral if, when any six lengths are 

selected from CT to use as labels in Figure 2b, one can actually construct the 

associated tetrahedron. 

Theorem:

A set CT is completely tetrahedral if it is a subset of an interval [t, t!2] 

containing at most one endpoint of this interval. 

Remarkably, the smallest completely tetrahedral set of consecutive integers 

is 13, 14, 15, 16, 17, 18. Note that we are allowed to use numbers from this set 

more than once as edge length of our tetrahedra. However, using only the six 

numbers 7, 8, 9, 10, 11, 12 one can construct 30 incongruent tetrahedra where 

each of the numbers 7,...,12 appears!

Partition types of tetrahedra

Since a tetrahedron has 6 edges we will consider initially classifying tetrahedra 

by which partition of 6 the tetrahedron is associated with. For example, the 

partition {4, 2} is interpreted as meaning that one has a tetrahedron with two 

kinds of edges. There are four edges of the same length a and two edges of 

equal length b, but where the lengths a and b are different. We will use the 

letters a, b, c, d, e, and f in our diagrams to indicate the 6 different possible 

kinds of edge lengths, but often we will have edges of the same length. Also 

note that the sextuple associated with a particular diagram codes the values 

in the positions of the edges as in Figure 2b. Consider the following example 

of a {4, 2} tetrahedron - S(11,12,12, 11, 12,12). The diagram associated with 

this sextuple is shown in Figure 5.



12

12

11

11

12

12

Figure 5 (An example of a {4, 2} tetrahedron)

Problem 4:

a. Verify that for every partition of 6 (it turns out there are 11 such partitions) 

there exists a tetrahedron with integer lengths which is associated with this 

partition.

b. Verify that for every partition of 6 one cannot draw 4 points not on a line in 

the plane and have integer lengths between the points (4 point determine 6 

distances). Determine which partition types are possible for degenerate 

tetrahedra with and without the condition that the 6 lengths involved are 

integers.

While the fact that every tetrahedron can be associated with one of the 11 

partitions of 6 is a nice fact, almost immediately one sees that there are 

other easy to spot properties of the pattern of edge lengths of tetrahedra 

that suggest even "richer" ways to classify tetrahedra. This is worthwhile 

because it encourages careful looking at geometrical phenomena as a way of 

making mathematical progress on problems. Look at the edge lengths in 

Figure 5. What do you notice?  The edges of length 11 are disjoint from each 

other while the edges of length 12 form a circuit of length 4. Can we use 



simple properties of the pattern of the edges with the same edge length to 

get a better (finer) classification system for tetrahedra? When one looks at a 

graph with labels on the edges, the length of the edges here, it is convenient 

to think of these labels as colors. So is there a path of colored edges of 

length 2? Is there a set of matching edges of the same color? A matching in a 

graph is a collection of edges that don't have any vertex in common. For the 

tetrahedron if a collection of colored edges form a matching, it turns out 

there are exactly two edges in the matching. If one takes into account simple 

graph theory issues of this kind, on top of the use of partitions, how many 

different types of tetrahedra are there? 

To get you started, think about the {4, 2}. The two edges thought of as having 

the same color can form either a matching or a path. These are only two 

possibilities. In the case of a path of length 2, the other four edges of the 

same length must form a circuit of length 3 with an additional edge at one of 

the vertices of the circuit. In the case of the matching, the other four edges 

form a circuit of length 4. Figure 6 shows the two cases side by side using the 

"lengths/colors" a and b. Note that we are not specifically interested in the 

relative size of a and b, so that we will consider the tetrahedron with four b 

edges forming a circuit with two a edges forming a matching and the 

tetrahedron having four a edges in a circuit with two b edges in a matching   

as having the same type.
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Figure 6

Figure 6 (Two different kinds of {4, 2} tetrahedra)

The sextuple associated with Figure 6a is S(b,a,a,b,a,a) while the sextuple 



associated with Figure 6b is S(a,a,b,b,a,a). Intuitively, it may seem that these 

two tetrahedra could not be congruent, but how can one be sure?

Here we can use some additional partition ideas that we mentioned earlier as 

well as seeing a way to help students broaden their view of geometrical 

phenomena. Consider the partition {6} where all of the edges of the 

tetrahedron have the same length. In this case we have a regular tetrahedron, 

all of whose faces are congruent, and even congruent equilateral triangles. 

For the type {6} we can write that its faces have congruence type {4}, by which 

we mean that all of the four faces are congruent. We can actually say a bit 

more. The faces have congruence type {4E}, meaning 4 equilateral triangles.

What partition types with respect to the congruence of faces can there be?

What is a complete list of partition types by faces if one takes the type of 

face, equilateral, isosceles, and scalene into account?

For example, we could have {4E}, {4I}, {4S}, and {3E, 1E}, {3E, 1I}, and {3E, 1S}, 

etc. However, just as we have proofs of interesting geometrical facts in plane 

Euclidean geometry, we can use simple geometry to prove that some of these 

types cannot exist. For example, {3E, 1E} would mean we have three congruent 

equilateral triangles, and one equilateral triangle which has a different edge 

length. This cannot happen. Though not "profound" we have the theorem:

Theorem: If three of the four triangles of a tetrahedron are congruent 

equilateral triangles, in fact, all four of the faces must be congruent 

equilateral triangles.

So, a student might ask what happens for the other types of triangles one 

might have:

Question: If three of the faces of a tetrahedron are congruent isosceles 

triangles, what can one say about the 4th face?

The answer to this question is rather interesting. If we have three faces of a 

tetrahedron with congruent isosceles faces, the fourth face can be an 

equilateral triangle or the fourth face can be an another isosceles triangle. In 

the first case we have a tetrahedron which is of partition type {4,2} while in 

the second case we have a {3,3} partition type tetrahedron!

Note that it might have been "nice" if we could tell tetrahedra apart based on 

congruence types, but because there are only 5 such partitions this turns out 

to be too much to hope for. Thus, the regular tetrahedron and the tetrahedra 



of the type corresponding to those in Figure 6a (from an edge point of view 

of type {4,2}) can't be told apart because they are both congruence type {4}, 

though with the refined use of the letters E, I, S we can tell them apart. They 

would be of types {4E} and {4I}.

It is fun for students and teachers alike to formulate questions of this kind 

and then to answer them! The important thing to note here is that geometry 

did not end with Euclid's Elements nor with a rich understanding of the 

classical non-Euclidean geometries. Even objects as seemingly simple as the 

tetrahedra offer many questions which are still not fully understood, not that 

hard to get some new results about, and just fun to explore.

For completeness, we show in Appendix I the 25 different partition types that 

one can classify tetrahedra into, together with the congruence type based on 

partitions of 4 augmented with the letters E, I, and S. One final question. Can 

one tell the 25 types apart using only partitions of 4 together with the labels 

E, I and S? (Hint: What about {1S, 1S, 1S, 1S}?)
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Appendix I

The 25 different types of tetahedra based on partitions of 6, the number of 



edges, and also indicating for each partition type the congruence of faces 

type, taking into account if the faces are equilateral (E), isosceles (I), or 

scalene (S).

{6} and {4E}     {5,1} and {2E, 2I}

a a
a

a

a

a              

a a
a

a

a

b

{4,2} and {4I} {4, 2} and {2I, 1E, 1I}

a b
a

a

a

b              

a b
a

a

b

a



{4, 1, 1} and {2I, 2I} {4, 1, 1} and {1E, 1I, 1I, 1S}

a b
a

a

a

c                

a b
a

a

c

a

{3, 3} and {3I, 1E} {3, 3} and {2I, 2I}

a a
a

b

b

b           

a a
b

b

a

b



{3, 2, 1} and {2I, 2S}    {3, 2, 1} and {1I, 1I, 1I, 1S}

a a
b

b

a

c              

a a
c

b

a

b

{3, 2, 1} and {2I, 1I, 1I} {3, 2, 1} and {2S, 1E, 1I}

a a
a

b

b

c         

a c
a

b

b

a



{3, 1, 1, 1} and {1E, 1S, 1S, 1S} {3, 1, 1, 1} and {1I, 1I, 1I, 1S}

a c
a

b

d

a                

a a
a

b

c

d

{3, 1, 1, 1} and {1I, 1I, 1S, 1S} {2, 2, 2} and {4S}

b a
c

d

a

a      

b a
c

c

b

a



{2, 2, 2} and {2S, 1I, 1I}  {2, 2, 2} and {1I, 1I, 1I, 1S} 

c a
c

b

b

a                 

b a
c

b

a

c

{2, 2, 1, 1} and {2S, 2S} {2, 2, 1, 1} and {1I, 1S, 1S, 1S}

c a
b

b

d

a                    

b a
b

c

d

a



{2, 2, 1, 1} and {2S, 1I, 1I} {2, 2, 1, 1} and {1I, 1I, 1S, 1S}

a c
a

b

b

d                   

a b
a

b

c

d

{2, 1, 1, 1, 1} and {1S, 1S, 1S, 1S) {2, 1, 1, 1, 1} and {1I, 1S, 1S, 1S}

b a
c

e

d

a                 

a b
a

c

d

e



{1, 1, 1, 1, 1, 1}  and {1S, 1S, 1S, 1S}

f d
e

b

c

a


