Notes for Remote Presentation 1:

Game Theory/Fairness Modeling

January 24, 2022
One can't teach (convey) to others what one does not know oneself.

Hence, I adopt a breadth over depth approach to curriculum!
Many people find it easier to learn mathematical ideas when "told" about them rather than reading about them in a book. Learning new mathematics is HARD.
Inventing new mathematics is hard and inventing "important" mathematics is especially hard. Teachers help us learn what more often than not we could not invent for ourselves.
Much of what you learn this semester can be used as contexts and modeling examples for topics in traditional K-12 curriculum public school curriculum.
For example, I will show you some interesting applications of working with fractions and solving first degree (linear) equations or two equations in two "unknowns" - standard algebra topics.
Graph of a function:

\[y = g(x) \]

Here the function is linear and the graph is a straight line.

Only a portion of the line is shown.

Dots and lines, vertices and edges graph.
What is "mathematical game theory?"
Mathematics has two major views about approaching "games":
First point of view:

* combinatorial games

Some examples:
* Nim (select sticks from piles (heaps of sticks or stones) (pieces are the same for both players - impartial games)

(You can think of this as two different Nim positions. One with 3 "heaps," the rows, the other with 7 "heaps.")
Another Nim position (there are 4 rows (heaps) with 1, 3, 5, and 7 items in these rows).

(From Wikipedia)
* Hex (partisan game-each player has their own pieces: one player is red, the other blue) Goal: make a red or blue chain between your two sides of the board. (Blue won)

(From Wikipedia.)
*Chomp

Move: pick a square of chocolate and bite off what is down and to the right.

(from Wikipedia)
Goal: If possible by looking at the initial board and the rules who will "win" the game and how should a person play to achieve that win? If the position is losing how can one "drag out" one's loss? One can hope one might win because one's opponent makes a mistake! *Solving the game* means finding optimal play for each player.
John Horton Conway (1937-2020) (One of the greatest mathematicians of recent times-born in Britain but died in the US)

Termination rule - so called "normal" play:
If you can't move you lose!!
If you can't move you win is called the *misère* version of the game. For reasons not well understood misère games are much harder to solve than "normal play" games.
The "classic book" on combinatorial games is:

Winning Ways for Your Mathematical Plays by Elwyn Berlekamp, John Conway and Richard Guy (now all deceased)
Other viewpoint on games:

* conflict issues drawn from economics (business), political science and psychology
*Prisoner's Dilemma

*Chicken

(models confrontation situations - labor vs. management)
Individuals who call themselves game theorists, whether they are mathematicians, biologists, economists, political scientists, or psychologists often study:
* elections and voting

preference or ranked ballet:

6 votes
Counting such ballots takes as inputs voter preference ballots and outputs a "winner" or collection (set) of winners. Hence, it is a non-standard example of a function!
* apportionment

After the 2020 Census was completed how many seats of the 435 in the US House of Representatives did each state get?
Two towns have stand alone costs to build a newly required sewage treatment plants. Building a plant together saves money. How might they share what they save by working together?
* allocation of scarce resources

Recent examples:

Covid-19 inspired issues:
Ventilator allocation to hospitals:

State X has been given 2000 new ventilators. How many should be assigned to the different hospitals (NYS has 215) in the state?
Distribution systems for COVID vaccines.

What is a fair way to distribute a highly desired but scarce resource? a new vaccine; water from the Colorado river?
* settling estate claims
* bankruptcy settlements
* school choice
* auctions
* matching markets

* fair division

Example: How to divide property after a divorce.
* weighted voting

When Britain left the European Union (EU) ("brexit") what changes in "voting" might make sense?
Remember that Luxembourg and Germany are both members of the European Union - should they have the same influence in decisions made by the EU?
One way to deal with such situations uses weighted voting. More important, more populous, more economically powerful countries would cast MORE votes. This contrasts with the idea of "one country, one vote." Countries can cast different numbers (blocks) of vote.
In the United States:
Senate: Each state gets two senators.

House of Representatives: Number of representative is proportional to population.
This represents two different views of equity or fairness!
* entity equity
* proportional equity

We will learn about many different approaches to being "fair."
Matrix game:

Matrix is a fancy word for a table:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-4</td>
<td>5</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>-4</td>
<td>6</td>
<td>x</td>
<td>7</td>
<td>-3</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>-4</td>
<td>y</td>
<td>-5</td>
</tr>
</tbody>
</table>

The matrix above is 3x5; three rows and 5 columns.

The first number is always the number of rows.
Matrix games: (This game is 2x2)

Moves for player named Column

<table>
<thead>
<tr>
<th></th>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>(3, -3)</td>
<td>(-2, 2)</td>
</tr>
<tr>
<td>Row 2</td>
<td>(6, -6)</td>
<td>(2, -2)</td>
</tr>
</tbody>
</table>

Row can make two moves (actions) as can Column. One play of the game can lead to one of four outcomes.
If you had play this game once how would you play?

If you had to play this game many times how would you play?

Is this game fair?
How would you play?

<table>
<thead>
<tr>
<th></th>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>(3, -3)</td>
<td>(-2, 2)</td>
</tr>
<tr>
<td>Row 2</td>
<td>(-1, 1)</td>
<td>(7, -7)</td>
</tr>
</tbody>
</table>

The first number in the pair is the payoff to row and the second number is Column's payoff.
Note that the sum of the payoffs is zero for each choice of actions of the players.

This is a zero-sum game!!
It is traditional for zero-sum matrix games to put only one number in each cell of the matrix, and that number is the *payoff from Row's point of view!*
<table>
<thead>
<tr>
<th></th>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>Row 2</td>
<td>-1</td>
<td>7</td>
</tr>
</tbody>
</table>

Is this game fair?

How would you play?
<table>
<thead>
<tr>
<th></th>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>(100, -100)</td>
<td>(-10, 10)</td>
</tr>
<tr>
<td>Row 2</td>
<td>(-10, +10)</td>
<td>(1, -1)</td>
</tr>
</tbody>
</table>

Is this game fair?

How would you play?
What would it mean for games like the ones we just looked at to be fair?
First, let us look at some ideas about how to play zero-sum matrix games?
Moves for player named Column

<table>
<thead>
<tr>
<th>Row</th>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>(3, -3)</td>
<td>(-2, 2)</td>
</tr>
<tr>
<td>Row 2</td>
<td>(6, -6)</td>
<td>(2, -2)</td>
</tr>
</tbody>
</table>

Moves for player named Row.
Sometimes no matter what your opponent does some action (move) is better than any other choice.
For Row: whatever Column does Row 2 is better than Row 1! (6>3; 2>-2)
Moves for player named Column

<table>
<thead>
<tr>
<th></th>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>(3, -3)</td>
<td>(-2, 2)</td>
</tr>
<tr>
<td>Row 2</td>
<td>(6, -6)</td>
<td>(2, -2)</td>
</tr>
</tbody>
</table>

For Column: whatever Row does Column II is better than Column I! (2>-3; -2>-6)
So it makes sense for no matter how many independent plays are made of this game for Row to always play Row 2 and Column to always play Column II. Payoff every time is: Row wins 2 Column loses 2. The game is UNFAIR: Row always wins, Column always loses when both play OPTIMALLY!
If the players of the original game a playing "rationally," it is as if they were playing the following 1x1 matrix game:

<table>
<thead>
<tr>
<th></th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 2</td>
<td>(2, -2)</td>
</tr>
</tbody>
</table>

A dull game to play especially for Column who always loses.
Note that Row moves by picking a row to "play." Column moves by picking a column to "play."

When one finds a row that dominates another row one can get a SMALLER game matrix by CROSSING out the row which is DOMINATED, leaving the dominating row intact.
Linguist issue:

Dominating row

Dominated row

Dominating column

Dominated column
So a first step in analyzing how to play a zero-sum matrix game is by looking for row or columns that might dominant other rows or columns.
Note: Initially there may be NO dominating row but after eliminating a dominated column there may be a dominating row.

Initially there may be NO dominating column but after eliminating a dominated row there may be a dominating column.
The Row (the row player) looks for dominating rows.

The Column (the column player) looks for dominating columns.
Simplify this **zero-sum** game matrix as much as possible. Payoffs are from Row's point of view. A payoff of -4 is a GAIN for Column and a loss for Row.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>-9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-4</td>
<td>2</td>
</tr>
</tbody>
</table>
What does one do if dominating strategy analysis does not simplify the game matrix of a zero-sum game?
Let us take a break to see how a geometric tool can help with insight into game theory and it will be useful to you in many other contexts.
Dots and lines diagrams known as:

* graphs

* digraphs (directed graphs) (Arrows on the lines)
This topic belongs to the areas of mathematics known as discrete mathematics, combinatorics, discrete geometry and graph theory.
Introduction (primer) of graph theory:
Dot = Vertex

Line segment = Edge

Self-loop or loop

Multiple edges

path

circuit (also called a cycle)

This graph has 10 vertices and 12 edges.

The valence or degree of a vertex in a graph is the number of (local) line segments which meet at the vertex. The valence of v is 3, of w is 5, and of u is 4.
Digraph: 4 vertices; 5 directed edges.

Numbers show indegrees and outdegrees
Indegree: number directed edges coming into a vertex

Outdegree: number of directed edges leaving a vertex
Example: Motion diagram of a 2x2 matrix game - in this case the payoffs are not zero-sum:

One dot for each payoff.
This diagram shows that there is no outcome that is STABLE because one of the players has an incentive to change his/her actions. A "stable" outcome would be one with OUTDEGREE zero.
This game has no
dominating rows or
columns: How would you
play this game?

<table>
<thead>
<tr>
<th></th>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>(3, -3)</td>
<td>(-2, 2)</td>
</tr>
<tr>
<td>Row 2</td>
<td>(-1, 1)</td>
<td>(7, -7)</td>
</tr>
</tbody>
</table>
Supposing you required to play this game 100 times - a new round after each prior round is completed?

How would you decide what sequence of moves to make?
Suppose you are Column and you notice that ROW always plays this pattern of rows:

1, 1, 2, 1, 1, 2, 1, 1, 2,
What would you do?

<table>
<thead>
<tr>
<th>Row</th>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>(3, -3)</td>
<td>(-2, 2)</td>
</tr>
<tr>
<td>Row 2</td>
<td>(-1, 1)</td>
<td>(7, -7)</td>
</tr>
</tbody>
</table>

Row's pattern: Rows: 1, 1, 2, 1, 1, 2,
<table>
<thead>
<tr>
<th>Row</th>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>(3, -3)</td>
<td>(-2, 2)</td>
</tr>
<tr>
<td>Row 2</td>
<td>(-1, 1)</td>
<td>(7, -7)</td>
</tr>
</tbody>
</table>