
An Online Open Access Textbook by Jacob Apkarian and Robert A. Hanneman 



 2 About this book 

About this book 

The purpose of this on-line textbook is to provide readers with an introduction to 

statistical applications of social network data. The text outlines the differences 

between variable-oriented statistical analyses and relation-oriented analyses, and 

using real data provided by the authors, takes the reader through examples that 

demonstrate how to test for association between attributes embedded in networks, 

between multiple networks themselves, and between the attributes and the networks 

they are embedded within. The text also goes on to examine models of network 

selection.    

It is assumed that the reader has basic knowledge of statistical approaches used to 

describe distributions, estimate parameters of those distributions, and test 

hypotheses about those parameters. It is also assumed that readers have a basic 

understanding of social network data, and recommended that readers refer to the 

following text by Hanneman and Riddle (2005) when necessary: 

http://faculty.ucr.edu/~hanneman/nettext 

You are invited to use and redistribute this text freely -- but please acknowledge the 

source. 

Apkarian, Jacob and Robert A. Hanneman. 2016. Statistical Analysis of Social 

Networks. Jamaica, NY: City University of New York, York College 

(http://web.york.cuny.edu/~japkarian/).  

  

http://faculty.ucr.edu/%7Ehanneman/nettext
http://web.york.cuny.edu/%7Ejapkarian/
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Chapter 1.  The Social Network Perspective 

The statistical analysis of social networks is a specialized application of the general ideas of 

describing distributions, estimating parameters of those distributions, and testing 

hypotheses about those parameters.  We’re assuming that readers already have knowledge 

of these general ideas.  So, to get started, let’s first get an understanding of what makes the 

application of statistics to social network data “special.” 

1.1 Psycho-metrics, Econo-metrics, and Socio-metrics 

1.2 The Social Network Perspective 

1.2.1 Focus on Relations 

1.2.2 Relations and Attributes 

1.2.3 Statics and Dynamics of and on Networks 

1.2.4 Multiple Levels of Analysis 

1.3 Organization of the Book 

1.4 Summary 

1.5 References 

 

1.1 Psycho-metrics, Econo-metrics, and Socio-metrics 

At the introductory level, the applied statistics that are taught in all of the social science 

disciplines are pretty much the same.  Students learn to describe the distributions of scores 

on variables measured across independently sampled cases.  The notions of association, 

partial association, and inference from sample to population are learned.  Training at the 

“intermediate” level is also very similar across the social sciences, where almost everyone 

gets a heavy dose of applications of generalizations of the general linear model for testing 

hypotheses about relations between variables.  But, beyond this point, each of the social 
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sciences has developed applications that are quite distinctive and attuned to needs of 

particular subject matter emphases. 

Over-simplifying, “psycho-metrics” responds to the challenge of attempting to systematically 

and reliably assess latent (mental) states that cannot be measured directly.  

Psychometricians have developed highly sophisticated tools for working with multiple 

indicators, factors, and scaling.  Also over-simplifying, “econo-metrics” responds to 

challenges of distinguishing signal from noise, characterizing trends, and assessing causal 

hypotheses from observational (rather than experimental) data. 

“Socio-metrics” as a special flavor of formal and quantitative analysis has existed for quite 

some time (Moreno, 1951).  Socio-metricians deal with the special problems and issues that 

arise when the units of analysis, across which variance is distributed, are relations between 

social actors, rather than attributes of individual actors. 

Most graduate students being trained in quantitative analysis for Sociology learn at least the 

basics of the special tools of psycho-metrics and econo-metrics.  Oddly, few learn anything 

about “socio-metrics.”  But, this is changing with the growing popularity of social network 

analysis (SNA), along with the convergence and cross-fertilization of interest in complex 

networks in many disciplines. The purpose of this book is to provide an introduction to 

thinking statistically about data that describe social relations, rather than social actors. 

 

1.2 The Social Network Perspective 

The use of graphs to represent relational data is commonplace in a wide range of sciences.  

The formal analysis of graphs has a very long history in mathematics and the use of 

statistical methods to analyze relational data has become particularly important and 

commonplace in physics and bio-sciences.   Social scientists borrow from (and in a few 

cases, contribute to) these rich histories.  The application of graph theory and the statistical 

analysis of relational data in the social sciences have a particular flavor, due to the subject 

matter and the theoretical questions of interest in these disciplines.   
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Social network analysis differs from the mainstream methodological tradition in most of the 

social sciences, which emphasizes the analysis of individual cases and their variable 

attributes (rather than relations) and experimental planned comparisons (rather than 

uncontrolled observational data). 

Most social scientists are well versed in the more main-stream “independent-cases” and 

“relations-among-variables” approach to statistical analysis.  Statistical methods for relational 

data adapt and use most of the same ideas, but with particular emphases.  It’s worth taking 

just a few minutes to get a sense of the distinctive flavor of relational, rather than 

variable/attribute analysis. 

1.2.1 Focus on Relations 

Social network analysis seeks to identify (and describe, and predict) regular patterns in the 

statics and dynamics of relations among social actors.  The actors are most often individual 

humans, but they might also be populations, organizations, or symbols and cultural 

categories. 

The emphasis on the “social,” of course, is what social science is about.  The emphasis on 

“relations” is another way of saying that what is of primary interest are “structures” 

composed of multiple individuals, and not the individuals themselves.  Sociologists often use 

the adage that “sociology is not about people,” by which they mean that the subject matter 

is regularities of social structures, not individuals. 

In mainstream statistical methods, the most common approach is to examine distributions 

of, and associations between scores on variables, measured across individuals.  Statistical 

methods for relational data also examine distributions of, and associations between scores – 

but the scores describe the relations between individuals, rather than attributes of each 

individual.  Relational methods examine the distribution of relations, measured across pairs 

of individuals. 

Let’s suppose that we had a sample of 10 people that we were observing.  For a variable-

oriented analysis, the sample size is 10.  We assume, for inferential purposes, that the 
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observations are independent; or, alternatively, that we can specify the non-independence as 

some form of correlated error. 

In a relational analysis of observations on the same 10 people, we have a “sample size” of 

45 if we assume that the relations are symmetric or bonded ((10 * 9)/2), or a sample size of 

90 if the relations are asymmetric or directed.  That is, the unit of observation is the relation 

between pairs of individuals, not the individual.  Obviously, these observations are not 

independent as multiple relations are “nested” within persons.  That is, the same person (or 

node) is part of many of the observations. 

The difference in how non-independence of cases is treated is the main technical complexity 

of the analysis of relational data.  The kinds of statistical hypotheses, and many of the tools, 

are otherwise the same for variable-oriented and relation-oriented analysis. 

But, there is a critical conceptual difference.  Relational analysis is all about describing, 

testing hypotheses about, and modeling social structures, or relations between actors.  

Conventional variable analysis is all about describing, testing hypotheses about, and 

modeling relations among attributes. 

1.2.2 Relations and Attributes 

Social network analysis is not a substitute for attribute/variable-oriented analysis.  SNA is an 

additional perspective that is used in conjunction with attribute/variable analysis. 

For many research questions, network influences are seen as a cause or predictor of 

individual attributes.  For example, the happiness of one’s friends may influence one’s own 

happiness.  For other research questions, networks can be seen as the result of individual 

attributes.  For example, people who are happy may be more likely to initiate friendship 

relations with others.  As the example suggests, sometimes networks and attributes may 

determine one another.  Individual differences may select for patterns of building networks, 

while individual differences may also be modified by network influences. 

In addition to research questions that combine both attributes and relations, there are also 

some questions that may be purely relational.  Do the patterns in a social network (e.g. who 
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are friends with whom) influence patterns in another relational network of the same actors 

(e.g. who seeks advice from whom)?  Do features of a pattern of social ties at one point in 

time affect the pattern of ties at a later point in time?   

As we move through the chapters that follow, we will look at techniques for addressing 

questions where relational data are independent and dependent with attribute (variable 

oriented) data, as well as techniques for examining association among relational data. 

1.2.3 Dynamics of and on Networks 

Social network analysts commonly distinguish between “dynamics on a network” and 

“dynamics of a network” (or, somewhat ambiguously, “network dynamics”). 

Dynamics on a network assume that the relational variable(s) are fixed and affect changes in 

attributes.  For example, the attitudes of actors who are more central in a network may be 

expected to be more influential on the attitudes of others than are the attitudes of actors 

who are more peripheral.  The pattern of social relations among actors is being seen as a 

determinant of how the attributes of actors are related. 

Dynamics of networks focus on the change in pattern of relational ties itself.  The outcomes 

to be explained are the making and breaking of relational ties among actors.  As ties are 

made or broken, the network changes, or becomes dynamic.  Analyses of the dynamics of 

networks are central research questions in the broader fields of complexity and network 

science.  In the study of social networks, the dynamics of networks is the study of how 

social structures change.  Changes in structure may be due to inherent tendencies in 

structures themselves and/or due to the attributes of the actors embedded in those 

structures. 

The statistical analysis of social networks has tool-kits for examining both dynamics on 

networks (usually observed as one cross-section) and tools for examining the dynamics of 

networks (usually observed as a time-series or fully time-continuous set of changes in 

relations). 
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1.2.4 Multiple Levels of Analysis 

In variable oriented statistical analysis the individual cases or observations may sometimes 

be seen as “embedded” in “contexts.”  This implies a degree of “non-independence” among 

cases which can be conceptualized as occurring within multiple levels of analysis.  It is 

helpful to draw a distinction among three rather different ways in which multiple levels of 

analysis commonly enter statistical analysis of attribute/variable data. 

First, sometimes cases are part of (network analysts would say “affiliated with”) larger social 

units.  Individual students may be nested within classrooms that are nested within schools 

that are nested within districts or neighborhoods.  Cases like this are not wholly 

independent observations, and mixed-models and multi-level modeling methods are often 

applied. 

Second, cases may not be independent of other particular cases due to co-existence in 

some local space.  In geo-spatial statistics, the attributes of a spatial area may be correlated 

with the attributes of adjacent spatial areas either because the boundaries of plots are 

arbitrary and the variables are continuously distributed in space, or because of omitted 

variables that have “local” influences.  Spatial auto-regressive and spatial auto-correlation 

modeling is sometimes used when this type of non-independence exists. 

Of course, the effects of adjacent cases on a focal case need not be geo-spatial; the effects 

may be social-spatial, or due to adjacency in a social network.  Statistical methods for 

spatial autocorrelation and autoregression can also be applied to cases that are at known 

“social distances” from other cases. In the above instances, statistical corrections are used to 

remove non-independence due to the embedding of social actors in some higher level 

geographic or social space.   

Third, cases might be thought of as being non-independent because they share the same or 

similar scores on some variable or attribute.  Two persons who are both women might be 

thought to be non-independent because of the influence of this common attribute.  This 
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kind of non-independence is, of course, at the core of variable-oriented analysis.  Here 

social actors can be viewed as being embedded in higher level social categories. 

Social network analysis recognizes this type of non-independence in two rather different 

ways.  If two nodes in a network share an attribute (say, both are women), network analysts 

would often look for “homophily” effects in their relational data.  That is, the fact that two 

nodes have the same or a similar attribute might be hypothesized to affect the likelihood 

that there is a social network tie between them.  Also, if there is a tie from one to the other, 

that it is likely to be reciprocated.  Two nodes that are “closer” to one another in a network 

might also be likely to influence one another in the direction of becoming more similar (if 

the attribute in question is mutable). 

Alternatively, network analysts might treat the non-independence of cases due to a common 

attribute as a “two-mode” network problem.  We won’t deal with approaches based on this 

way of thinking in this text, but the idea is straightforward.  In the two-mode way of 

thinking in network analysis, cases may be one of the modes and variables the other.  

Associations between variables are observed when cases share the attributes.  For example, 

if being older and being female are associated, it is because some cases that are more likely 

to be affiliated with the category “old” are also more likely to be affiliated with the category 

“female.”  Simultaneously, two cases are closer, or more similar, or share common affiliations 

if each case is tied to “old” and to “woman.”  

Many variables/attributes-oriented analysis questions have complexities arising from non-

independence of observations, particularly in observational rather than experimental data.  

Many of these complexities can easily be seen as arising from the embedding of cases in 

networks.  So, one important set of issues to be dealt with in the text that follows is how to 

do “conventional” or “variables and attributes” analysis in the presence of network 

embedding.  It is useful to think of these kinds of problems as multi-level problems where 

cases are embedded in a network. 
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Many network analysis questions are also usefully cast as multi-level problems.  Social 

networks are structures (patterns of relations among cases) that arise out of the “agency” of 

the individual social actors.  To understand the dynamics on networks, and the dynamics of 

networks, the attributes of actors almost always need to be taken into account.  Actors with 

different attributes (i.e. different scores on variables) are likely to have different networking 

behaviors. 

The social network analysis perspective takes structures, rather than individuals, as its central 

concern.  But, the perspective is inherently multi-level.  The clearest statement of this idea 

continues to be that of Ronald Breiger (1974).  Variables/attributes analysis takes individuals 

as its central concern.  In many cases, though, it is also multi-level; individual cases are not 

independent of one another because of their embedding in social networks, contexts, or 

categories. 

Socio-metrics, then, is a distinctive branch of quantitative analysis because it focuses on 

structures, or relations.  But, it cannot be separated from variables/attributes analysis.   

Sociologists should re-cast their thinking about “conventional” statistical analysis of case-

wise data to be explicit about how they treat structural effects. 

 

1.3 Organization of the Book 

Our plan for the book assumes that the reader is reasonably comfortable with conventional 

statistical analysis (i.e. the analysis of distributions and joint distributions of variables, 

measured across cases).  One of our goals is to show how the analysis of variables (or 

“attributes” in network jargon) can be connected in powerful and useful ways with the 

analysis of relational data.  Relational data are also used to address certain research 

questions and hypotheses that are unique to the social network perspective.  Several of our 

chapters will focus on approaches and techniques for testing hypotheses about networks as 

the outcome to be explained. 



 12 Chapter 1.  The Social Network Perspective 

We will begin (in Chapter 2) with a brief look at how social network data are structured.  

From a strictly mathematical point of view, there is nothing all that unusual about relational 

data – relational data are simply collections of matrices and vectors.  But social network 

analysis does have a specialized language, and draws some analytical distinctions among 

types of data that are useful in helping to translate substantive problems into formal 

statistical analyses. There are many different software systems for working with network 

data, and they do vary in the details of how data are prepared for analysis (Huisman and 

van Duijn, 2011).  Fortunately, most data structures are quite simple and it is usually easy to 

move data from one application to another -- which is often necessary.   

We only briefly touch on descriptions of univariate distributions of variables (i.e. attributes) 

in Chapter 3. Descriptions of (and hypothesis tests about) univariate distributions are 

important, but covered in any basic courses in conventional statistics.  We also won’t spend 

much time discussing the description of and hypothesis testing about the univariate 

distributions of relational data.  Network analysis generally, and social network analysis, 

particularly, have developed an extremely large number of tools for characterizing all kinds 

of interesting things about the shape and texture of a network.  There are now a number of 

useful sources (including Wasserman and Faust, 1994 and Hanneman and Riddle, 2005) that 

cover these issues.  We will spend a little time reviewing the ideas of degree-distributions 

and triad-censuses in our later chapters, as these are critical to understanding the theory 

underlying exponential random graph theory. 

Chapters 3 and 4 discuss measures of association and tests of significance when dealing 

with “monadic” (that is attribute or “variables”) data and “dyadic” (that is, network or 

structural level) data. 

Chapter 3 takes a look at conventional attribute/variable analyses with more explicit 

attention to the problem of non-independence of observations that arises from network 

embedding.  We will be looking at some approaches to understanding the association 

between two attributes/variables when the cases are drawn from a network rather than from 

independent sampling. 



 13 Statistical Analysis of Social Networks 

Chapter 4 looks at some simple approaches to studying the relationship between two 

networks, or the association between two dyadic or relational variables.  Actors may have 

multiple forms of social ties that covary (e.g. both friendship and authority relations).  

Similarly, we may have panel data on a social relation and be interested in the correlation 

between earlier and later observations of the structure. 

Chapters 3 and 4 look at how we study association between two attributes and between 

two relations, respectively.  In Chapter 5, we take the next logical step by examining the 

association between an attribute and a relation.  All three of these chapters focus on 

symmetric association rather than prediction and modeling of hypothesized causal relations. 

In Chapter 6 we shift our focus to the study of asymmetric association, which predicts, or 

models hypotheses about causal effects.  Chapter 6 focuses on the analysis of “network 

influence.”  That is, how are the attributes of an actor (i.e. the scores of cases on variables) 

affected by the ways that the node is embedded in a network, and the attributes of the 

“alters” to which each “ego” is connected?  A very wide range of important substantive 

problems in sociology deal with questions of these kinds of “social influences.”  Do the 

attitudes and behaviors of those with whom I interact affect my attitudes and behaviors?  

Chapter 7 turns the prediction problem around:  how can we use individual’s attributes to 

predict the ways in which they become embedded in a network?  This kind of problem is 

often called “network selection.”  That is, how do the attributes of social actors shape the 

ways in which they make or break social relations to others – and, in the process, “select” 

one possible emergent network instead of another?  In “network selection” problems, the 

relation or network is the dependent variable.  This is a rather new way of thinking about 

things for many readers.  So, Chapter 7 will spend some time looking at how SNA theorizes 

the processes that create networks.  These ideas become quite important in understanding 

the remaining chapters. 

In “conventional” statistics, the primary tool for problems involving the prediction and 

modeling where there are multiple hypothesized causal influences and need for statistical 
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control is the generalized linear model.  In Chapter 8, we tackle the same problem for 

networks, rather than attributes, as outcomes.  At the time of the writing of this text, there 

are two somewhat related – but not yet fully integrated – approaches to multiple-variable 

prediction of networks as outcomes.   

Specialists in the statistical analysis of social network data have developed a quite distinctive 

approach to relational variable outcomes based on the underlying theory of “exponential 

random graph” development.  These approaches place an emphasis on using the structural 

tendencies of social networks (for example, the tendencies toward “reciprocity” or “closure”) 

as predictors in explaining complex patterns of relations.  The field of “exponential random 

graph” modeling is a distinctive approach to the analysis of relational data that is firmly 

grounded in social science theory, and underlies the analysis of network development and 

co-evolution that are discussed in Chapter 9. 

The prediction of network relations as outcomes, however, can also be cast as a rather 

straightforward general linear mixed-model type of problem in which relations between two 

actors are nested in the cross of the two actors (and their attributes, as well as the attributes 

of the dyad).  At the time of this writing, the mixed-models approach to network data has 

the comparative advantages of dealing with relations that are measured at the nominal, 

ordinal, or interval-ratio levels; exponential random graph models, to date, deal with binary 

outcomes.  Mixed models are also familiar to many analysts, and integrate with a wide body 

of approaches to complicated data structures.  But, so far, mixed models approaches to 

relational data do not have the underpinnings of SNA theories of where social structures 

come from and do not deal easily with the issues of structural effects and complex 

underlying distributions that vary with graph density – the great strength of exponential 

random graph models. 

In Chapter 9 we take a brief look at two very important areas at the “cutting edge” (at the 

time of this writing) of modeling in the exponential random graph tradition.  Exponential 

random graph theory is particularly useful as a statement of how social relations develop 

and change over time as actors select network structures by making and breaking social 
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ties.  Sometimes SNA data have repeated cross-sections (or “panels”) of observations on the 

patterns of ties among the same actors as they change over time.  Some models have been 

developed (“Sienna”) specifically for studying network development of “evolution.” 

The earlier chapters developed two related themes.  On one hand, networks develop and 

are shaped (i.e. one network is “selected” instead of another) by choices made by actors in 

forming or breaking ties.  These choices may be “biased” by the attributes on the actors.  

On the other hand, some attributes of the actors making these choices may be influenced 

or shaped by the attributes or behaviors of the “alters” to which each “ego” is connected.  

For example, a student might experiment with drugs because his/her friends do, and 

consequently drop some friendship ties with non-user friends and make new ties with 

others who are drug users.  That is, the attributes of an actor (e.g. being a drug user or not) 

may “co-evolve” with their position in the network (e.g. the likelihood of having friendship 

ties with others who use drugs).  At the cutting edge of statistical applications in network 

analysis are some “Sienna” models that treat both actor attributes and relations as joint 

outcomes of joint processes of “network selection” and “network influence.” 

1.4 Summary 

Applied statistics in the social sciences have a common set of core concepts and techniques 

that differ little across the disciplines.  Several of the disciplines have also developed more 

specialized emphases that address problems that are particularly common in the types of 

data that arise from the research designs and measurement methods that the disciplines 

often employ.  Psycho-metrics emphasizes the use of multiple measures to assess 

underlying traits that are not directly observable.  Econometrics emphasizes approaches to 

time-series and multiple-time series of observational data.  Both of these branches take the 

individual case as the unit of analysis.  The distinctive feature of socio-metrics arises from its 

emphasis on the relation between cases, rather than the attributes of individual cases, as the 

unit of analysis. 

SNA is a particular application of the analysis of relational structures to patterns of ties 

among social actors.  SNA has developed quite a large toolkit for the description of the 
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distributions of relations among actors, such as degree-distribution, centrality, clustering, 

path-length, etc. (see, for example, Hanneman and Riddle, 2005; Kadushin, 2012; Wasserman 

and Faust, 1994).  Additionally, a great deal of work has been done over the past 50 years 

on modeling and hypothesis testing of social network data. 

Much of the work on statistical analysis of social networks focuses on relationships among 

two or more networks, or the change in a single network over repeated observations (the 

dynamics of networks).  Other work integrates the analysis of network data with the analysis 

of data on the attributes of the individuals who make up (or are “embedded in”) the 

network.  Sometimes the network plays the role of independent variable in analysis of how 

the attributes of other actors influence the attributes or behavior of a focal actor.  

Sometimes networks are taken as the dependent variable; i.e. the selection of a particular 

pattern of relations among the actors is seen as arising from the attributes of the 

embedded actors.  Recent work has explored the “co-evolution” of the distributions of 

individual actor attributes and distributions of dyadic (or relational, or network) ties. 

The text will first introduce the most common data structures used in the statistical analysis 

of social network data.  It will then explore the analysis of attribute data, when the cases 

being observed are embedded in a network.  We start with the analysis of symmetric 

bivariate association, move to asymmetric association in which either the network or the 

attribute may be the dependent variable.  From there, we move to a more extended 

treatment of approaches examining the relations between actors as the outcome of interest. 
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Chapter 2.  Working with Relational Data 

In this chapter, we will look at some of the main ways in which the data for SNA are 

structured for use in statistical analysis.  Our examples will use UCINET, which is good for 

many basic statistical analyses of network data (on fairly small data sets).  We will also 

briefly discuss how network data can be structured for use in multi-level modeling and 

exponential random graph modeling. 

Many of the ideas and the terminology of the statistical analysis of social network data can 

be a bit difficult when discussed in abstract conceptual terms.  However, they become 

clearer when we apply them to actual data.  We will start the chapter by taking a look at the 

dataset that will be used for most of our examples throughout the text. 

2.1 About the Example Data 

2.2 Attribute (Nodal) Data Structures 

2.2.1 Fixed and Time-varying Attributes 

2.2.2 Network Position as an Individual-level Attribute 

2.3 Relational (Dyadic) Data Structures 

2.3.1 Building Relational Variables from Attributes 

2.3.2 Repeated Measures 

2.3.3 “Training” Networks 

2.4 Affiliation 

2.5 Multiple Relations 

2.6 Statistical Packages for Network Data 

2.7 Summary 

2.8 References 
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2.1 About the Example Data 

For most of our examples here, we will be using some data about the students in an upper 

division, undergraduate course in social networks (taught in the fall term of 2011).  The data 

are a population census (not a sample, or set of ego-networks).  The students were asked to 

report about acquaintanceship (i.e. “who in the class do you know well enough to ask a 

small favor, like borrowing class notes?”), on four occasions over the 11-week class.  That is, 

the design is a panel, rather than a single-cross section, or continuous time set of 

observations.  Information was also collected about some “fixed” attributes (ethnicity, 

gender), and about some “time varying” attributes (attendance, grades on examinations) 

that occurred over the term.  The acquaintanceship networks for the four waves are shown 

in figures 2.1 through 2.4, colored by ethnicity (blue = White; red = Hispanic; green = Asian; 

yellow = African-American), with men shown as circles and women as squares. 

Figure 2.1. Acquaintanceship Network for Classroom Data, First Day of Class  
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Figure 2.2. Acquaintanceship Network for Classroom Data, First Mid-term Exam 

 

Figure 2.3. Acquaintanceship Network for Classroom Data, Second Mid-term Exam 
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Figure 2.4. Acquaintanceship Network for Classroom Data, Final Exam 

 

More complete details about the classroom data are available on this page.  Readers will 

also be able to download the data there as well in both UCINET and Excel formats.  The text 

was written so that readers can follow the examples by recreating them on their own. 

There were seventy-five students in the class.  Over the academic term, the density of ties 

increased quite a lot.  On the first day of class, there were 78 unique ties (Figure 2.1).  By 

the first midterm, there were 315 (Figure 2.2).  By the second midterm, there were 530 

(Figure 2.3).  And at the time of the final exam, there were 895 ties (Figure 2.4).  Notably, 

not all students who said that they were acquainted had reciprocated ties.  For example, in 

the center of Figure 2.1, we can see that CO indicated that they knew CR, but CR did not 

acknowledge CO as an acquaintance.  In the same figure, AD claimed to know CO, but CO 

did not acknowledge knowing AD.  Network ties that are not necessarily reciprocated are 

referred to as “directed” ties.  There were more women than men in the class, but 

reasonable numbers of each gender.  The class had considerable ethnic diversity, with more 

students identifying as Asian than any other group. 

http://web.york.cuny.edu/%7Ejapkarian/
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SNA analysts use a wide variety of research designs, sampling, and measurement.  Design, 

sampling, and measurement choice all greatly affect how the resulting data need to be 

analyzed.  We can’t hope to be comprehensive in this text.  This data set lets us illustrate 

the kinds of questions and approaches that are most common in current social science 

work.  Understanding the basics with a fairly simple and familiar example is a starting point 

for analysts with more complicated problems. 

Most of the examples in this textbook are done in UCINET, which is why we made the data 

available in UCINET data files.  UCINET data are stored in pairs of files, one with the 

extension .##h and the other .##d.  You can call either one to open the data.  The .##d file 

contains the actual data, and the .##h file contains information on how to call and read the 

.##d file.  You will need to download and store both in the same folder to open a dataset.  

One set of files used for examples throughout this text is titled attributes2011, which holds 

the student attribute data.  The other four sets of files (wave1_2011 through wave4_2011) 

contain the acquaintanceship data indicating which students nominated which other 

students as acquaintances.     

 

2.2 Attribute (Nodal) Data Structures 

What is unfamiliar about the statistical analysis of social network data is its focus on 

relations between cases as the “unit of analysis,” rather than the more familiar focus on 

attributes of individuals (which vary across individuals, and are called “variables” outside 

SNA).  

SNA does work with variables, though.  It thinks about them as “attributes” of nodes.  For 

example, a conventional, variable oriented analyst might say that “Susan has the score or 

value of woman on the variable gender.”  A social network analyst would say “the node 

Susan has the attribute woman.” 

Sometimes attributes play the role of independent variables used to explain or predict 

network variables.  For example, are women students in our class (“woman” being an 
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attribute of each individual) more likely to be acquainted with other women than they are 

with men? 

Sometimes attributes play the role of dependent variables, predicted by network variables.  

For example, is a student’s performance on a test (an individual attribute) predictable from 

the scores on the test of those the student is acquainted with (an observation about dyads)? 

Recording data about the attributes of individuals for use in UCINET and other network 

software is quite familiar.  Data are arrayed in the conventional “rectangular” way (cases by 

variables) or “vector” (cases by a single variable).  Figure 2.5 shows a portion of the 

attributes dataset for the student data.  The display is a screen-shot of the dataset viewed 

through the UCINET Matrix Editor (note: data arrays like this can be created in any software 

and saved as text files to be imported into UCINET later). 

Figure 2.5. Partial View of the Student Attributes Rectangular Data Array in UCINET 

 

In UCINET, it is best to make sure that each case’s ID is short and a single string, preferably 

without special characters or spaces.  Cases need to be sorted in the same order in the 

attribute file or files as they are in the relational (dyadic) datasets discussed shortly.  It’s 
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good to keep a codebook, as UCINET procedures often ask you for a variable number in the 

attribute set (e.g. Ethnicity is col. 1, Group is col. 3). 

All the standard approaches to coding categorical, ordinal, and interval level variables apply.  

It is usually best to do most data transformation and elaborate coding outside of UCINET 

(say in a spreadsheet or statistical package).  UCINET does offer some special tools for 

working with attribute data, however, that we will discuss below.  Before turning to these 

tools, let’s briefly discuss some categories of attribute variables that are used in SNA. 

Most specialized social network analysis software systems record information about nodal 

attributes in the same general way as UCINET.  However, each attribute is generally stored 

in a separate text file (with the cases sorted in the same order across all the files, and 

varying header information).  When relational data is analyzed using mixed-effects 

generalized linear models, each data line refers to a relation (dyad), and the attributes of the 

nodes associated with the dyad are coded with each data line. 

2.2.1 Fixed and Time-varying Attributes 

Some attributes that we might be interested in analyzing are ascribed characteristics of 

individuals that are fixed for each node.  For example, in our data set, a student’s gender 

and ethnicity are treated as static across the four waves.  In the statistical analysis of 

network data, fixed attributes often are used to partition the network (divide it into groups 

of cases with the same attribute).  In mixed-effects modeling, attributes are “level 2” 

variables (because dyads are the primary unit of analysis – level 1), and dyads are nested in 

the crossing of two individuals. 

Other attributes of individuals may vary over time.  In our example, exam score (E1, E2, E3), 

attendance, term paper score, and term paper team participation all occur at particular 

points in time.  Some might be treated as repeated events or latent growth curves (exam 

scores or attendance, for example).  Time varying covariates may be treated as causes of 

how a person selects their networks (do students who perform badly on exam 1 create 

more ties with students who performed better?).  Alternatively, time varying covariates might 
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be treated as outcomes of network influence (e.g., does a student’s test score on the second 

exam depend on the test scores of the others in their network at the time of the first 

exam?). 

All in all, these kinds of variables or attributes are entirely familiar.  There is another kind of 

attribute data used in SNA that might not be quite as obvious. 

2.2.2 Network Position as an Individual-level Attribute 

One of the key ideas of SNA is that how an individual is “embedded” in the network may 

affect either their attributes and behavior, or their selection of social relations (making and 

breaking ties).  For example, one important hypothesis is that of “preferential attachment.”  

This principle says that individuals who have more network ties are more likely to be sought 

as partners than those who have fewer ties.  In this case, the number of ties that an actor 

has is viewed as a variable or attribute of the actor that affects the probability that they will 

form more ties. 

It is very common for analysts to calculate measures of an individual node’s position in the 

network and save these as attributes of the node for further analysis.  The specific aspects 

of a node’s position that might be relevant, of course, will vary with the goals of the 

analysis.   A node’s degree, their centrality, the clustering of their ego-network, and the 

homophily of their ties (the proportion of their ties that are ties to others with the same 

attribute as themselves) are common things about an individual’s network position that are 

often treated as nodal attributes in further analysis.  While such variables describe a node’s 

position in a network, the variables are actually an attribute of the node, and can be treated 

as such.   

When working with UCINET, most procedures (for example, calculating the between-ness 

centrality) automatically output a dataset containing the case labels and vector(s) of results.   

These output files can be used directly as input in other routines, or they can be appended 

to an existing attribute file using the “Join” procedure (discussed below and in the next 

chapter). 
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One important part of network data sets then, are arrays that describe attributes of nodes.  

Attribute data are familiar; they record the scores on variables (i.e. the attributes) of cases 

(nodes).  They can be stored as single vectors (with scores for each node on a single 

attribute), or as lists-of-lists in a rectangular matrix.  Most specialized network analysis 

programs (e.g. R-Statnet or Sienna) will want each attribute stored in a separate data-file.  

Statistical packages (e.g. Stata) will want rectangular arrays. 

Now, let’s turn our attention to the less familiar notion of relational, dyadic, or network data. 

 

2.3 Relational (Dyadic) Data Structures 

A network is made up of nodes and the relations between them.  The basic building-block 

of a network, then, is the relation between two actors.  When all the dyads are collected 

together, larger and more complex structures emerge.  “Relational” or “dyadic” or “network” 

data describe the relations among all pairs of actors.  Figure 2.6 shows a portion of the 

fourth wave of “acquaintanceship” among our social networks students, as an example. 

Figure 2.6. Partial View of the Acquaintanceship Data in UCINET, Wave 4 

 



 27 Statistical Analysis of Social Networks 

In the example, we see that node “BA” said that they were acquainted with node “AD.”  But, 

note that “AD” does NOT indicate that they are acquainted with “BA” (read across the rows).  

Relational data are stored in square node-by-node matrices.  Data may be “asymmetric” or 

“directed” (like the above example) where A→B does NOT necessarily imply B→A.  In 

asymmetric data, the source of the relation is the row, and the destination of the relation is 

the column.  Data may also by “symmetric” or “un-directed” or “bonded” where A→B does 

imply B→A.  The diagonal cells (AD to AD, etc.) are usually ignored in SNA.  It is 

conventional to code them as zero. 

Social networks that have large numbers of actors can produce very large square matrices 

which can be difficult to edit, store, and process.  Another very common way of recording 

relational data is the “edge list.”  An edge-list is a list of the dyadic relations that are 

present in the social network (leaving out those that are absent).  An edge-list contains the 

identity of the origin node and destination node for a directed tie (or the two nodes 

involved, in any order, in a symmetric tie), and the value of the tie.  Many network analysis 

software packages are able to work with edge-list data (they convert it to full matrices for 

analysis).  Statistical packages, when working with relational data, usually define each row of 

data as an “edge” (but they will also require a listing of the edges or relations that are 

absent).   

The entries in a relational dataset may be binary, multinomial, ordered, or interval-ratio.  

Relations between the nodes in each dyad commonly represent the presence/absence of a 

tie, or what “type” of tie exists, or the strength or probability of a relation.  Appropriate 

statistical treatment of relational data, of course, depends on the way that the relational 

variable has been measured.  Most of our examples will be very simple, focusing on the 

simple presence or absence of a tie. 

Individual nodes in SNA can have any number of attributes.  These are stored in the dataset 

as one or more rectangular (node by attribute) matrices, or one or more vectors.  Similarly, a 

SNA dataset can have any number of relational variables.  Let’s consider some of the major 

types of relational variables used in many SNA applications. 
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2.3.1 Building Relational Variables from Attributes 

In SNA, our focus is often on the existence, strength, or quality of the relationship between 

two nodes.  Sometimes it is helpful to characterize the relationship between two actors as a 

function of the comparison between the attributes of each. 

In SNA, the relationship between two nodes is “nested” within the pair of nodes.  As an 

example, suppose that Fred is a man and Susan is a woman.  We might wish to characterize 

the relation between Fred and Susan as being between two persons that differ on gender.  

That is, the dyadic relation between Fred and Susan is not gender homophilous. 

The attributes of individual nodes are often important in SNA, but the more common SNA 

questions concern the comparison of the attributes of two nodes, which describes the dyad.  

One can imagine an analysis that uses attributes in both ways.  For example, are women 

(individual level variable) more likely than men to have ties to persons of the same gender 

(a relational characteristic)? 

UCINET has an interesting tool for comparing the attributes of two individual actors and 

building a dyadic variable (a relational variable that exhibits properties of dyads typically 

displayed in matrix form like the data in Figure 2.6) to describe the relation between them.  

Consider the dialog box created by Data>Attribute to matrix, shown as figure 2.7. 
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Figure 2.7. UCINET Dialog for Converting the Attributes of Pairs of Nodes to a Dyadic 

Variable 

 

In this dialog, we’ve identified our rectangular attribute data set as input.  We’ve selected 

the column (rather than the row, because our data array is actors-by-attributes, not 

attributes-by-actors), and the individual attribute “Gender.”  The output of this procedure 

will be stored in a new dyadic (node-by-node square matrix) data set.  In this case, we’ve 

selected “Exact Matches” in the “Similarity Metric” panel.  This means:  if the score of node A 

on the variable gender is the same as the score of node B on the variable gender, then 

code a “1” in the new matrix element AB (and BA).  That is, the result of this operation is to 

build a matrix with “1” if two nodes are the same gender, and “0” if they are not.  That is, a 

matrix of “gender homophily” is created. 

There are a number of other useful functions here.  “Difference” generates a “1” if two 

nodes are dissimilar.  Absolute and squared differences measure the distance between two 

nodes on a quantitative attribute.  Product and Sum generate a characterization of the dyad 

that aggregates their attributes.  For example, we might think that the importance of the tie 
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between two actors A and B is the synergy or multiplication of the degree of each of the 

two individuals. 

The dialog also provides for normalizing the results (usually used with quantitative 

attributes).  One may also automatically center the resulting dyadic score.  This is often used 

in multi-level analysis to center the scores on the “level-1” (dyadic) variable around their 

mean. 

2.3.2 Repeated Measures 

SNA work has increasingly focused on studying the processes that generate and modify 

network structures over time.  While some research designs and data sources allow us to 

identify the exact time at which each dyadic relation is created or modified, most data sets 

consist of panel data – observations on the state of the dyadic ties as multiple, discrete, 

points in time.  Our example data set, for instance, observes the ties among pairs of 75 

students at four discrete times during an academic term. 

Data on the same relation among the same actors is stored as a series of square node-by-

node matrices in UCINET (with identical node labels and the nodes in the same order).  For 

convenience in processing and displaying repeated dyadic measures, the matrices can be 

“stacked” into a single file. 

Data>Join>Join Matrices   combines or stacks multiple matrices with the same rows and 

columns into a single file.  Subsequent runs in UCINET procedures will process all the 

matrices in the stacked file, and produce analyses for each matrix. 

Another UCINET tool can be used when the multiple observations are missing some of the 

actors.  This circumstance might arise where the data are taken from observations or 

documents at different time points, each of which reports on the actors present at the 

particular time of observation.  Social network data are often collected by querying the 

actors who happen to be present at a particular time point, and each matrix may not 

include all of the actors who were ever present.  If we want to include all actors in the 
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analysis of each panel, we can use the time stack tool to build conformable data sets for 

each panel. 

Transform>Time Stack has a dialog box that looks like Figure 2.8. 

Figure 2.8. UCINET Dialog for Merging Dyadic Panel Data 

 

We’ve identified the student-by-student acquaintanceship at each of the four time points as 

our source data, and chose to save the data in a new file called “allwaves_2011” for future 

use.  The default “Match on labels” has been selected for UCINET to determine which cases 

match across files.  We’ve asked that missing value codes be entered for cases that are not 

present in a particular file (alternatively, one might want to assume that the case was 

present, but had no ties, by selecting “use zeros”).  The output file or files will contain rows 

for all nodes that are in any of the input files. 

When repeated measures have been joined into a stacked matrix in this way, another tool 

can be used to create a new dyadic variable that identifies change in ties.  Tie change 

matrices can be interesting descriptively (e.g. did tie additions, i.e. new acquaintanceships, 
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accelerate in the period of cramming for the final exam compared to other times in the 

quarter?).  Tie changes can also be used as a dependent variable to test hypotheses about 

network change (e.g. are women more likely than men to form new ties?). 

Transform>Build tie change matrices generates a dialog like that in Figure 2.9. 

Figure 2.9. UCINET Dialog for Generating Tie Change Data 

 

The input dataset is our time stacked data, and we can select a name for the matrices that 

result from the operation.  The “Method” choices allow generating measures of any 

“difference” between two matrices (and it’s amount, if the relation is quantitative); or, we can 

select “improvement” to record only positive changes; or we can select “formation” to 

capture cases where there was no tie at time one, but a tie was formed by time two.  One 

can also select whether the resulting stacked change matrices are calculated for adjacent 

points in time only, or for all pairs of time points. 

2.3.3 “Training” Networks 

The relationship between two actors may be a function of a different relationship between 

them.  In our example data, the students in the class were placed (more or less randomly) 

into groups to work on research term papers.  An obvious hypothesis would be that being 
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placed into the same research team will result in becoming acquainted with other team 

members (actually, this didn’t always happen in the class!). 

This is an example of one network (who shares the relation of “being in the same work 

group with”) that “trains,” or acts as a “context” or “social geography,” that may guide the 

formation of new acquaintanceship ties.  Being present in the same physical space, being 

members of the same organization, and other forms of affiliation can modify the likelihood 

of ties of other types forming.   

Similarly, if one type of tie exists between two nodes (say, one goes to the other for advice 

on the job), this may modify the likelihood of the formation of another kind of tie (say, 

being friends outside of work).  In a slightly different sense, the presence of one kind of 

network tie (advice seeking) is “training” the other network (being friends). 

Network data that describe the presence of joint affiliation, or context, or other kinds of ties 

are recorded just like any other network or relational variable – as a square matrix (node-by-

node, directed or not, valued or not).  As we will see later, the relation between two nodes 

in one (training) network can easily be used to predict the relation between the two nodes 

in another. 

 

2.4 Affiliation 

One of the most important strengths of the way that SNA conceptualizes social structure is 

in recognizing how contexts shape (and are sometimes shaped by) patterns of ties between 

pairs of social actors.  The most often cited example of this idea is the study by Davis, 

Gardner, and Gardner (1941) of sociability among a group of women in a southern town.  

Davis et al. recorded whether each of the women had attended each of a number of social 

events.  The strength of ties between pairs of women can be indexed by the number of 

events they both attended (and/or both did not attend). 
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Data structures that show the ties between two types of social entities (in the Davis et al. 

example, women and social events) are called “two-mode” (or “bi-partite” or “affiliation”).  

The data are usually recorded as a rectangular matrix of actors (on the row) by events (on 

the column).  For use in our statistical analyses where we are predicting dyadic outcomes, 

affiliations need to be turned into node-by-node matrices.  The idea is simple:  the tie 

between two nodes is some function of the pattern of their affiliations.  Usually, if two 

actors have very similar affiliations, we regard the tie between them as strong; if they have 

very dissimilar affiliations, we regard their tie as weak. 

In many social network analyses, it can be very important to create dyadic variables that 

measure shared context or joint affiliation between the members of dyads.  Such variables 

often represent the similarity of the locations of the actors in “social space” and can be 

strong predictors of the likelihood of other kinds of social ties between them. 

There are a variety of approaches and tools for turning affiliation data into dyadic variables 

for use in SNA.  Here are just a few: 

Sometimes we have stored information about context or affiliation as a vector.  In our 

student data, for example, we recorded which of 10 workgroups a student was assigned to.  

We might want to turn this into a student-by-student dyadic variable, coded as “1” if two 

students were in the same workgroup and “0” otherwise.  The UCINET tool Data>Partition to 

sets will help to accomplish this task, as in figure 2.10. 

Figure 2.10. UCINET Dialog for Partition to Sets 

 



 35 Statistical Analysis of Social Networks 

In this dialog, we’ve opened our “attributes” file (nodes by attributes), and told UCINET to 

use column 3, which (from our codebook) we know to be the “work group number” variable.  

We’ve given a new name to the output file.  The output dialog is shown in Figure 2.11. 

Figure 2.11.  UCINET Output of Partition to Sets 

 

The output data file that we called “Same_work_group”, a portion of which is shown in 

Figure 2.12, is a node by attribute “affiliation” matrix.  That is, it shows, for each student, 

whether they were a member of group 1, group 2, …, group 10, with dummy codes. 

Figure 2.12. UCINET Output Data from Partition to Sets 
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These 10 dummy variables could be treated as “level2” (individual) attributes in a multi-level 

analysis.   

We may also want to create a dyadic variable to represent co-presence in the same work 

group; this is a dyadic or “level 1” variable.  To convert the “Same_work_group” data file to a 

student-by-student dyadic variable, we can use the Data>Affiliations (2-mode to 1-mode) 

tool.  The dialog is shown in figure 2.13. 

Figure 2.13. UCINET Dialog for Affiliations: Convert 2-mode to 1-mode Data 

 

We’ve input our affiliation matrix of students by workgroup dummy variables, and accepted 

the default output name (“Same_work_groupRows”).  This UCINET tool has many useful 

options.  We can choose to work on either rows (to create student-by-student output) or 

columns (to create a workgroup-by-workgroup matrix).  We can normalize output (useful 

when the input is quantitative rather than binary), and insert zeros for missing data.  There 

are also many useful choices about how to define “affiliation.”  The “sums of cross-products” 

multiplies each element of the work-group membership of one person by that of the other 

person, and sums the result.  With binary data, and only one group membership for each 

actor, this creates a matrix where a pair is coded “1” if they are in the same work group, and 
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zero otherwise.  The other options provide alternative ways of operationalizing the idea that 

two actors have more “similar” affiliations or stronger ties. 

The output file that results from this dialog is shown as figure 2.14. 

Figure 2.14.  UCINET Output of Affiliations Tool 

 

The output file is a binary, symmetric matrix.  We see that BA and CJ are coded as being in 

the same group, for example.  This dyadic variable can now be used to test group difference 

between workgroups. 

The “affiliations” tool is particularly useful when we want to define the similarity, or 

closeness, or strength of ties between members of a dyad based on the profile of ties that 

they have with contexts, attributes, identities, or other social objects with which social actors 

can affiliate. 

More generally, we may wish to create dyadic variables describing the strength, closeness, 

or similarity between members of dyads based on the similarity of their profiles across any 
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set of attributes.  For example, one might have information about the location of each actor 

in “Blau-space” (e.g. their gender, ethnicity, social class, education, etc.; McPherson & 

Ranger-Moore, 1991).  We might wish to reduce this complexity to a single similarity score 

to characterize the social closeness (the inverse of social distance) between the actors in 

each dyad.   Such similarity is often important in promoting the formation of social ties. 

Any number of techniques can be used for this kind of scaling of actors.  We begin by 

comparing each pair of actors, and calculating a similarity or a distance between them 

based on their scores on multiple attributes.  UCINET provides two suites of tools for 

generating similarity or distance matrices:  Tools>Similarities and Tools>Dissimilarities & 

Distances. 

Once an actor-by-actor similarity (or dissimilarity) matrix is created from the attribute 

vectors, it can be used directly as a dyadic variable.  Similarities and distances between 

actors can also be further reduced and refined by using clustering and/or scaling 

(Tools>Clustering; Tools>Scaling/Decomposition).

 

2.5 Multiple Relations 

When other relational variables serve as independent variables in an analysis of a relational 

dependent variable, they present no special challenges.  For example, we might be 

interested in the extent to which the relational variable “respondents are the same gender” 

predicts the outcome “respondents have a reciprocal acquaintanceship relation.”  But there 

are occasions when we may be interested in more than one relational variable as 

dependent.  For example, we might seek to explain both “friendship” and “advice seeking” 

as functions of independent variables. 

In conventional statistical analysis, multiple dependent variable problems lead us into the 

territories of simultaneous equations or structural equation modeling.  Unfortunately, 

specifically tailored applications of these techniques don’t exist for relational outcomes (as 

of this writing). 



 39 Statistical Analysis of Social Networks 

When the problem calls for the treatment of multiple relational variables as dependent, 

there are a number of choices, all of which have some difficulties. 

One can analyze each outcome separately, using the other outcomes as independent, along 

with other predictors.  Of course, this is a mis-specification, and also does not deal with 

possible correlated errors across the multiple dependent relational variables. 

Alternatively, one can scale the multiple outcomes with mathematical or logical operations.  

For example, if two actors are both friends and advice givers, we might code the dyad “2”; if 

either relation is present, we might code “1”; if neither relation is present, we would code 

“0.”  Or, we could treat the outcome as the presence or absence of each of 4 types of 

relations (both ties present, only friendship present, only advice giving present, neither 

present).  Ordered outcomes (such as the 0, 1, 2, 3 coding) or multinomial coding (such as 

treating each combination of relations as a qualitative type of tie) can be analyzed in some 

multi-level statistical software that will do hierarchical modeling with non-Gaussian 

dependent variables. 

 

2.6 Statistical Packages for Network Data 

Several groups of researchers have made continuing contributions to the development of 

statistical analysis of network data.  As of this writing, there are a number of very interesting 

and useful packages that have been made freely available to network modelers (Huisman 

and van Duijn, 2011).  UCINET and several other packages (e.g. Pajek) have excellent suites 

of tools for describing and working with univariate and bi-variate network and attribute 

data.  Multivariate analysis in the generalized linear modeling framework has been 

developed in specialized (and free) packages such as Stochnet, Statnet, PNET, ORA, and 

Sienna (http://www.gmw.rug.nl/~stocnet/StOCNET.htm; https://statnet.csde.washington.edu/; 

http://sna.unimelb.edu.au/PNet; http://www.casos.cs.cmu.edu/projects/ora/; 

https://www.stats.ox.ac.uk/~snijders/siena/).  Most recently, software development for 

Exponential Random Graph and related statistical modeling has been prepared for the R 

http://www.gmw.rug.nl/%7Estocnet/StOCNET.htm
https://statnet.csde.washington.edu/
http://sna.unimelb.edu.au/PNet
http://www.casos.cs.cmu.edu/projects/ora/
https://www.stats.ox.ac.uk/%7Esnijders/siena/
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environment (https://cran.r-project.org/web/packages/statnet/index.html; https://cran.r-

project.org/web/packages/sna/index.html; https://cran.r-

project.org/web/packages/ergm/index.html; https://cran.r-

project.org/web/packages/RSiena/index.html). 

The data structures that we’ve discussed above are common to all of the specialized 

packages for the descriptive and predictive analysis of network data – though the details of 

how data are prepared vary somewhat from package to package.   

Many (but not all) multivariate predictive analyses of network data can also be carried out 

with standard commercial statistical software such as Stata and SAS.  Because these 

packages were primarily designed for non-network analysis, they require a rather different 

data structure.  We’ll discuss, and show an example of preparing and analyzing relational 

data with Stata in Chapter 8. 

 

2.7 Summary 

Social network analysis often involves the description and explanation of attributes of nodes.  

Working with nodal attribute data is similar to conventional statistical approaches that 

analyze attributes of cases at the individual level.  Often, social network analysis will treat 

network position or structural measures of embeddedness as individual level data using 

them as predictors or determinants of nodal attributes.   

Unlike conventional analysis, social network analysis also involves the description and 

explanation of relational data.  Unlike traditional rectangular data arrays, relational data is 

often represented in square matrices and contains information about dyads or pairs of 

nodes.  Relational variables often display the presence/absence or strength of ties between 

pairs of nodes.  Additionally, relational variables can be generated using nodal attribute data 

(e.g. the degree to which both nodes in a dyad share a given attribute) and are often used 

to represent shared affiliation.   

https://cran.r-project.org/web/packages/statnet/index.html
https://cran.r-project.org/web/packages/sna/index.html
https://cran.r-project.org/web/packages/sna/index.html
https://cran.r-project.org/web/packages/ergm/index.html
https://cran.r-project.org/web/packages/ergm/index.html
https://cran.r-project.org/web/packages/RSiena/index.html
https://cran.r-project.org/web/packages/RSiena/index.html
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This chapter introduced an example dataset that was used to display different types of 

network data.  The dataset contains acquaintanceship information about 75 undergraduate 

students from four points in time across a single course term and will be used throughout 

the rest of this text to demonstrate a variety of social network analytic techniques that deal 

with nodal attribute data, relational data, and both simultaneously. 
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Chapter 3.  Association Between Attributes in Network Data 

Having looked a bit at how attribute and relational data are structured, we are ready to start 

doing some statistics.  In this chapter we will look at a type of analysis that is very familiar:  

studying the association between two variables.  In SNA, this is commonly referred to as 

studying the association between two attributes of the actors in a network. 

3.1 Association Between Attributes in Network Data 

3.2 Univariate Statistics for Attributes 

3.3 Association Between the Attributes of Embedded Nodes 

3.3.1 Comparing Two Groups 

3.3.2 Comparing Multiple Groups 

3.3.3 Continuous Association 

3.4 Partial Association and Prediction of Attributes by Attributes 

3.4.1 Multiple Regression 

3.4.2 Generalized Linear Models 

3.5 Summary 

3.6 References 

 

3.1 Association Between Attributes in Network Data 

The notion of studying the association between two variables (while possibly controlling for 

others) is the bread-and-butter of conventional statistical analysis.  So, it shouldn’t be 

surprising that social network analysts are often interested in the association between two 

(or more) attributes observed across the actors in a social network.  With our example data 

that was introduced in the last chapter, we could test the hypothesis that women were more 

likely to have higher participation scores in their research groups than men, for example.  
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We would like to know how strong such a tendency is in our observations (that is, measure 

the strength of the association); and, we would like to test the null hypothesis that the 

observed association was the result of a random process. 

In the last chapter, we noted that SNA also thinks about how actors are embedded in 

networks as attributes of the actors – operating to provide opportunities and imposing 

constraints on their attitudes and behaviors.  For example, individual students who are in 

highly central positions in the classroom network might be more likely to have higher 

grades.  In this case, the centrality of the student in the network is being thought of as an 

attribute of the individual.  How attributes of nodes are related to their positions in the 

network are key questions asked in SNA (e.g. are men more likely to have higher network 

centrality than women?). 

Studying the association and partial association among attributes of actors in a network is 

done with exactly the same tools as are used in studying association among variables.  

Cross-tabulations, tests for differences of means of two or more groups, correlation and 

regression can all be applied to describe the strength and form of association between the 

attributes of actors in a network.  The descriptive statistics used for association with the 

attributes of nodes are exactly the same as the descriptive statistics used to describe the 

association between variables across cases. 

But, when we turn to the question of inference and hypothesis testing, we come to a new 

issue.  The formulae that are used to calculate standard errors and test statistics for variation 

of variables across cases most commonly assume that the cases are independent 

replications – and often, randomly drawn from an infinite population.  SNA data, most 

commonly, are not samples but populations.  And, SNA data are, by definition, not 

independent replications.  It is precisely the non-independence of the cases that is of central 

interest to SNA!  When we measure the association between two traits or attributes of 

actors who are connected to one another by social ties, it is quite likely that the social ties 

might have been created, at least in part, as a result of the attributes of the actors. 
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In testing hypotheses, the logic is to compare some statistic or parameter (for example, a 

measure of association or partial association) to how much we would expect that statistic to 

vary from one set of observations to another just by chance (the standard error).  The 

standard error, or sampling variability, or reliability is a statistic often calculated using 

standard formulae that assume independence.  With social network data, standard errors 

need to be computed differently.  Conventional standard errors will be biased – they may 

be too big (leading us to incorrectly reject a true hypothesis) or too small (leading us to 

incorrectly accept a false hypothesis). 

Estimating standard errors for non-independent observations is a common problem, and has 

many solutions.  Probably the best known and most widely used approaches are the jack-

knife, bootstrap, and permutation methods (Efron, 1981).  For SNA, the logic of permutation 

is quite appealing, and is widely used in UCINET. 

The basic idea of the permutation trials method is to take the existing data on the attributes 

of the nodes and randomly re-assign the scores on one attribute.  The parameter we’re 

interested in (for example, the Pearson correlation between student’s attendance and test 

scores) is then measured in the permuted dataset, where the relationship between the two 

attributes is the result of a random trial.  This procedure is repeated a number of times (say 

1,000 or 10,000), and the distribution of the statistic across the random trials is calculated.  

We then compare the observed statistic against this random distribution to find out how 

frequently the statistic would be observed in random trials.  It is a simple (if computationally 

a bit demanding) approach that preserves the observed distributions of both attributes – 

whatever they might happen to be – and requires no assumptions about sampling. 

 

3.2 Univariate Statistics for Attributes 

Usually the most interesting research questions call for examining association, partial 

association, and prediction.  But, it is always a good idea to first examine each of the 

variables, one at a time.  Since attribute data are stored as conventional rectangular data 
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(cases by variables), any statistical package can be used to examine the distributions of the 

variables. 

For quantitative attributes, UCINET’s Tools>Univariate Statistics will do the trick.  Let’s look 

at our student data.  The dialog is shown as figure 3.1. 

Figure 3.1. UCINET Dialog for Attribute Univariate Statistics 

 

The dialog is very simple.  We select the name of our attribute file, and specify “columns” to 

calculate the statistics on the distribution of the attributes across cases.  The matrix is not 

node-by-node, so the question about the diagonal doesn’t apply.  The output can be saved 

as a UCINET data file (also rectangular, variables by statistics), and/or cut-and-pasted from 

the output log.  A portion of the output is shown in figure 3.2. 
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Figure 3.2.  Portion of UCINET Output for Attribute Univariate Statistics 

 

The report gives all the conventional basic descriptive statistics, N, minimum and maximum, 

as well as some additional measures of variation.  UCINET doesn’t compute skewness and 

kurtosis.   

For our categorical variables of gender, ethnicity, and work group, moments are not 

particularly helpful.  However, for continuous variables like Attend1 (percentage of in-class 

quizzes completed in weeks 1-3; up to the first exam), these statistics are useful. 

A frequencies table would be nice, and UCINET does provide one – though it is not ideal. 

Figure 3.3 shows the dialog for Tools>Frequencies. 
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Figure 3.3.  UCINET Dialog for Attribute Frequencies 

 

 

Figure 3.4.  Partial UCINET Output for Attribute Frequencies 

 

Figure 3.4 shows a portion of the output.  We can still see that women outnumber men 

about 2 to 1 (48 to 27), that 17 students identified as White, 20 as Hispanic, 32 as Asian, 

and 6 as African American in the class. 
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Let’s now turn to bi-variate association of nodal attributes. 

 

3.3 Association Between the Attributes of Embedded Nodes 

There are many different approaches to examining association or covariation between two 

variables, depending on the levels of measurement of the variables and the purposes of the 

analysis.  Some of the most common approaches are to build cross-tabulations (for two 

categorical attributes), compare two or multiple group means (for one categorical and one 

continuous attribute), or use correlation and regression to examine two continuous 

attributes.  UCINET does not have a tool for cross-tabulations and permutation tests for 

categorical association.  For problems of that type, statistical software that will run boot-

strapping, jackknife, or permutation should be used.  In Stata, for example, one can embed 

a regular call for a tabular analysis within permutation trials with syntax such as: 

Permute Y  “text of the cross-tabulation command, options”  name-of-statistic desired , 

reps(n) 

The permute command tells Stata to randomly permute the values of the variable Y (i.e. one 

of the variables in your cross-tab).  The text of the tables command is then embedded in 

quotes (e.g. “tabulate Y X, chi2”).  Following the crosstab command, a report on the values 

of one or more saved statistics is requested (e.g. perhaps chi-squared; saved in local 

memory as “r(chi2)” by the “tabulate” command), and the number of desired random 

replications is specified. 

3.3.1 Comparing Two Groups 

To test hypotheses about the association between a binary attribute (e.g. gender, in our 

data set) and a continuous one (e.g. exam scores), we can calculate a standard two-group t-

test.  In UCINET, the dialog can be located at:  Tools>Testing hypotheses>Node level>T-

test. 
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Let’s look at two examples.  We first look at whether there are gender differences (a fixed 

binary attribute) in mean final exam scores (a continuous attribute).  Following conventional 

wisdom, our research hypothesis is one-tailed:  we expect that the women’s mean will be 

higher than the men’s.  Figure 3.5 shows the dialog. 

Figure 3.5. UCINET Dialog for a Two-group T-Test 

 

Only two things to note here:  First, you must know which column your variable is located in 

(final exam score happens to be column 9 in the attribute dataset, and gender happens to 

be column 2).  UCINET will suggest column 1 by default, and you can simply edit it.  

Second, you can select the number of random permutations for significance tests.  The 

default is 10,000, which is more than adequate for most purposes.  Note the “random 

number seed.”  You may wish to generate the same permuted distribution for multiple tests.  

This can be done by noting, and then specifying that the same seed be used to start the 

pseudo-random number generator.  Figure 3.6 shows the output (try replicating Figure 3.6 

using the seed 16721). 
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Figure 3.6.  UCINET Output for Testing Gender Differences in Final Exam Scores 

 

Here, we need to note that UCINET takes the value of the categorical variable (gender) from 

the first case and calls that “Group 1”.  So in this output, Group 1 happens to be women 

(coded 2 on the variable) due to the arbitrary fact that the first case in the dataset is a 

woman.  This can be confusing, so the user should always check the attributes of the first 

node (or the “N” value if they differ; for example, we know the N for women is 48 from 

figure 3.4, therefore Group 1 in Figure 3.6 is women) to make sure they know which group 

is which.  The output shows the descriptive statistics for the two groups.  Women have a 

mean test score of about 64, while the men’s average is about 73, in contradiction to our 

research hypothesis.  The variation within each group, however, is substantial, and there are 

considerably more women than men.  In the significance tests section, we see the difference 

in means and three probability levels based on the standard error of the difference between 

means generated from the permutation trials.  The interpretation is as follows: in over 99.9% 
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of random networks with the same numbers of men and women and the same univariate 

distribution of test scores, the mean of group 1 (women) is NOT higher than the mean of 

group 2 (men).  In more than 99.9% of the trials, the mean of group 2 (men) is higher than 

group 1 (women).  In about one third of 1% of the permutation trials, the difference in 

means observed between groups is less than the average difference observed in random 

trials. 

Figure 3.7. Stata Test of Gender Difference in Final Exam Scores with Conventional Standard 

Errors 

 

Figure 3.7 shows the same problem, but tested in Stata using conventional standard errors.  

In this case, we see that the statistical significance (p level) of the test of the difference 

between the two group’s means is stronger using the standard error estimated by 

permutation trials than using the classical formula (the two-tail p-level for the permutation 

test is 0.0037, the two-tail p-level using the classical formula is 0.0051).  Standard errors and 

significance results may be either stronger or weaker using the permutation method than 

the classical formulas. 

In the next example, we ask whether the average in-degree of women (that is, the number 

of others who say they are acquainted with them) is different from the average in-degree of 
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men at the time of the final exam.  We can calculate the in-degree of each node using 

Network>Centrality and Power> Degree in UCINET.   

Figure 3.8.  UCINET Dialog for Generating Degree Data 

  

Here, we’ve chosen the Wave 4 relational data, specified that it’s directed, and UCINET saves 

measures of degree and centrality in separate files.  We can use the Data>Join>Join 

Columns procedure to append the degree attributes generated in the file “wave4_2011-deg” 

to our “Attributes2011” file and create a new dataset called “Attributes2011_degW4” (the 

Join procedure was discussed in greater detail in Chapter 2).  When running a t-test for 

differences in in-degree between men and women, the dialog is the same as in Figure 3.5, 

except that we have selected different variables (in-degree will be column 13 in the new 

joined dataset). 

The reason for a second example of a simple two-group t-test is to point out that attributes 

can be measures of how individuals are embedded in social networks.  The in-degree of a 

node describes dyadic relations (someone else said they were acquainted with ego).  But, 

the extent to which a node has dyadic ties is an attribute of the node itself.  The output 

from the t-test is shown in Figure 3.9. 
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Figure 3.9.  UCINET Difference in In-degree Between Men and Women Students (Wave 4) 

 

We see that the mean in-degree of men students (group 2) at the end of the course was a 

bit higher than that of women.  Using the standard errors of the difference in means 

generated by permutation tests, we see that a difference this large occurs relatively 

frequently in randomly permuted networks (26% of the random networks).  Therefore, we 

do not find support for the notion that the difference in the average in-degree of men and 

women students is not due to random processes. 

3.3.2 Comparing Multiple Groups 

If one of the attributes is categorical with more than two categories, and the other attribute 

is continuous, a common approach to testing hypotheses is one-way ANOVA (in UCINET:  

Tools>Testing Hypotheses>Node Level>ANOVA).  Let’s see if there are any significant 
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differences between the mean final exam scores of students classified by ethnicity.  The 

dialog is in figure 3.10, and the output is in figure 3.11. 

Figure 3.10.  UCINET Final Exam Score Means by Ethnicity Dialog 

 

 

Figure 3.11.  UCINET Final Exam Score Means by Ethnicity Output 

 

UCINET’s output is minimal, providing the standard ANOVA table, F-test statistic, and 

significance.  Eta-square is also shown.  We conclude that to 95% confidence, there is at 

least one difference between group means that is not expected to occur very frequently in 

random permutations of the data.  And, group mean differences account for 13.2% of the 

observed variation in individual’s final exam scores.  That is, the differences among mean 
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final exam scores by ethnic identity probably are not due to random variation (though there 

may very well be spurious factors at work here). 

Let’s see whether there are differences by ethnic identity in the extent to which individuals 

are named by others as acquaintances. 

Figure 3.12.  UCINET Node In-degree by Ethnicity Dialog 

 

 

Figure 3.13.  UCINET Node In-degree by Ethnicity Output 

In the classroom data, it looks like there are no reliable differences due to ethnicity in the 

extent to which students are likely to be known by others in the class. 
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3.3.3 Continuous Association 

Where one or both attributes are measured at the ordinal level, the standard approach is to 

calculate measures of association (e.g. gamma).  UCINET doesn’t have built in tools for 

calculating hypothesis tests for grouped-ordinal variables.  Statistical software packages that 

allow calculation of estimated standard errors with re-sampling or permutation should be 

used. 

For problems where both attributes are interval-ratio, or can reasonably be treated as such, 

UCINET has built-in tools for using linear regression (Tools>Testing hypotheses>Regression). 

Let’s examine whether students who name more others as acquaintances than average (out-

degree) are, themselves, more frequently cited by others (in-degree).  Again, variables that 

describe how individuals are embedded in the network (in-degree, out-degree) are being 

treated as attributes of the individuals.  Obviously, standard significance tests don’t apply, as 

the nodes generating the degree counts are the same individuals. 

Figure 3.14.  UCINET In-degree and Out-degree Regression Dialog 
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In the dialog, note that the dependent and independent variable can be taken from 

different datasets (one might be a file of attributes, the other a file of results of calculating 

network statistics like degree or centrality).  All of the important regression output can be 

saved in output data files for further processing.  We’ve left the boxes blank here so as not 

to save the output as new datasets. 

Figure 3.15.  Portion of UCINET In-degree and Out-degree Linear Regression Output 

 

From the output, we see that there is a strong positive association on out-degree with in-

degree (+0.917).  The variance explained in in-degree by out-degree is considerable (0.841).  

Each additional person named by ego as an acquaintance is associated with an increase of 

0.917 others naming ego as an acquaintance.  A two-tailed p-level for the coefficient is 

reported as < 0.001 (under “Proportion As Extreme”). 

Let’s run the same problem in Stata, using both the conventional standard errors and 

permutation trials to test the slope coefficient. 
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Figure 3.16.  Stata Regression Output with and without Permutation Trials 

 

Stata reproduces the regression coefficients and R2 statistics.  Notice that the conventional 

standard error approach and permutation trial approach produce identical results for this 

example. 

 

3.4 Partial Association and Prediction of Attributes by Attributes 

While many useful hypotheses can be addressed with simple bi-variate association, most of 

our work uses variations of the generalized linear model to implement statistical control via 

partialling.  UCINET has basic tools for multiple linear regression with permutation tests, and 
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this is a nice tool when the attribute we are interested in predicting is measured at the 

interval-ratio level.  Because the significance tests are based on permutations, we do not 

need to assume the normality of the distribution of residuals. 

3.4.1 Multiple Regression 

As an example, let’s extend our efforts to predict which students were more likely to 

perform well on the final exam (E3).  Here’s an example of the UCINET dialog for regression 

that specifies multiple independent variables. 

3.17. UCINET Multiple Regression Dialog 

 

The dependent variable is selected as the desired column in one attribute data set.  The 

independent variables are selected by column numbers from the same data set, or a single 

different data set.  The number of permutations and seed can be selected, and all of the 

basic regression output components can be saved for further processing or reporting.  The 

output is presented in Figure 3.18. 
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3.18. Portion of UCINET Multiple Regression Output 

 

Scores on the final exam (E3) turn out to be moderately predictable, with a significant F-

value and adjusted R-square of about 0.3.  Score on the first midterm (E1) has the largest 

significant effect on the final exam score, but attendance during the middle of the term is 

also a significant predictor (p < 0.05, one-tail).  Score on the second midterm (E2) also has a 

positive effect on E3, but only in 88% of random trials which cannot be considered 

significant based on typical social science statistical standards.  Neither measure of 

embeddedness is strongly related to exam performance, with nodes that are more popular 

(in-degree) than we would expect for their sociability (out-degree) showing a tendency to 

perform better, net of other factors.  But again, this effect is not significant to 95%.   

Finally, let’s compare the results of the permutation tests to the regular parametric tests, 

which are shown in Figure 3.19, where they were calculated with Stata. 
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3.19.  Stata Regression Output 

 

More accurate estimates using permutation trials guard us against committing errors of 

assuming that effects are systematic, when they might well really be unreliable. 

3.4.2 Generalized Linear Models  

Where attributes of interest are not Gaussian, one should use a statistical package with GLM 

and appropriate dependent distribution and link functions.  Most scientific statistical 

software suites include a wide variety of modeling approaches for attributes with varying 

properties.  Generally, Monte Carlo or permutation trials methods are available to get 

corrected standard errors and significance tests – though sometimes it requires a bit of 

work. 

Attributes of nodes might sometimes be a count of something.  For example, we might 

count the number of children that an ego has had and explore whether this is associated 

with the attributes of ego’s friends.  A Poisson or Negative Binomial model might be used. 

Attributes of nodes might be binary (for example, ego is a drug user, or not).  Logistic, 

probit, or complementary log-log models might be used. 
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Attributes of nodes might be “multiple choice” outcomes (e.g. ego is working full time, part 

time, unemployed, or not in the labor force).  Multinomial logits or probits might apply, or 

ordinal cumulative logits and probits.  See textbooks describing general linear modeling for 

details (e.g. Hoffman, 2004). 

 

3.5 Summary 

Virtually any hypothesis about the relationships between nodal attributes in SNA data can 

be studied using the modeling techniques that are used for data based on other 

observational schemes. 

Social network data, though, are usually populations rather than samples.  So, the questions 

of “generalization” from the sample to the population usually do not arise.  Inferential 

statistics are necessary, though, as the results in one observation of a network may appear 

to be systematic, but are really the result of an unusual outcome of a random process.  

Permutation approaches (Monte Carlo simulation) provide a natural tool for testing the 

reliability of results with social network data. 

Measures of network position can be used as attributes of individuals (for example, degree, 

centrality, closure of ego networks, homophily of ego net, proportion of others who have 

adopted or have some attribute, or the average score of those connected to ego).  

Conventional statistics then can be used to include some powerful social influence and 

embedding information in tests about ego’s attributes, in addition to ego’s fixed individual 

attributes.  In a later chapter we will look at some other ways of studying how the attributes 

of those to whom a node is connected might impact the node’s attributes (network 

influence models are discussed in Chapter 6). 

Conventional approaches to estimating standard errors and hypothesis testing are not 

appropriate when using social network data, because the “cases” (nodes) are not 

independent.  But, this turns out to not be much of a problem.  The logic of permutation 

trials to generate estimates of reliability of parameters fits naturally with SNA.  UCINET 
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adopts this approach for some common tests.  Virtually any hypothesis though, can be 

tested by using permutation in combination with generalized linear models. 

In this chapter, we’ve discussed how to study the relationship between two (or more) 

attributes of nodes (or, variables measured on cases).  The unique contribution of SNA, 

however, lies in treating the relationship or tie between nodes or cases as the thing to be 

explained and understood.  In the next chapter, we’ll take a look at some approaches to 

studying the relationships between two or more attributes of relations, or dyads. 
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Chapter 4.  Association Between Networks 

Relational data describe the ties between pairs of actors.  Just as we might ask whether two 

attributes are associated (e.g. do men and women differ on test scores?), we might ask 

whether two relations are associated (e.g. are people who are connected by being in the 

same work group likely to be connected by a friendship tie?).  This chapter introduces 

analyses that examine association between relational data.  

4.1 Networks as Dyads 

4.2 Association Between Networks 

4.2.1 Categorical Relations 

4.2.2 Valued Relations 

4.3 Prediction of Networks 

4.3.1 Binary Relations 

4.3.2 Valued Relations 

4.4 Summary 

4.5 References 

 

4.1 Networks as Dyads 

In the last chapter we looked at how the relationships among attributes of nodes in a 

network can be studied statistically.  This is really the same as studying statistical association 

between variables, observed across cases.  The only new issue was how to test hypotheses 

appropriately in the face of the non-independence of the cases. 

In this chapter we take a look at studying association between networks.  That is, are the 

relations of one type among the actors in a network associated with relations of another 

type?  For example, are people who are friends outside of work more likely to go to one 

another for advice at work?   In our example student data (introduced in Chapter 2), we 
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might ask how similar the patterns of acquaintanceship are between the beginning and the 

end of the class, or whether people who were both in the same work group are more likely 

to be acquainted with each other. 

Studying whether two or more networks are associated is actually quite straightforward.  

Rather than treating the “case” or node as a unit of observation (or a row in our dataset), 

we treat a “dyad” of nodes as the unit of observation.  A first network is “deconstructed” 

into all possible pairs of nodes (dyads), and the dyadic relationship is measured for each 

pair (it may be binary, i.e. present/absent—or valued, i.e. tie strength).  The other network of 

interest is deconstructed in the same way.  Then, the association between the two can be 

calculated.  The “sample size” then is always equal to the number of unique pairs of nodes.  

If the network is directed,  

𝑁𝑁 = 𝐾𝐾(𝐾𝐾 − 1) 4.1 

 

where K is the number of nodes in the network.  If the network is symmetric, 

𝑁𝑁 =
𝐾𝐾(𝐾𝐾 − 1)

2
 4.2 

 

The trick to studying associations among networks lies in seeing the relation between each 

pair of nodes as the object of interest (is a tie present?, how strong is it?).  A network is 

seen as simply a collection of (all possible) dyads.  The association between two networks is 

describing the extent to which the scores of one set of relations correspond to the scores of 

another set of relations among the same actors. 

In studying the relationships among networks, the inferential statistical question is not one 

of generalizability – after all, we have (in theory) directly observed the entire population of 

actors, so there is no inference from sample to population.  But, there is a question of how 

likely it is that the association we observe between two or more networks is the result of 

random, rather than systematic processes.  So, again, the method of generating standard 

errors by permutation of the existing data is a useful tool. 
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Let’s take a look at a few simple examples of the association and partial association among 

networks using tools from the UCINET toolkit. 

 

4.2 Association Between Networks 

Two networks are associated, co-vary, or are correlated to the extent that the patterns of 

dyadic relations in one correspond to the pattern of dyadic relations in the other.  The 

relation between the actors in a dyad can be measured as either present/absent, or as a 

matter of degree.  Let’s start with categorical relations, which are studied by way of cross-

tabulation, then turn to continuous relations, which are studied by way of correlation. 

4.2.1 Categorical Relations 

Suppose that we want to know whether there is an association between two categorical 

relations.  This somewhat new idea is far easier to grasp with examples.  Here’s an obvious 

hypothesis about the association between two categorical relations:  students who were 

assigned to the same groups to work on their term papers are more likely to report that 

they are acquainted by the end of the course than students who were not in the same 

workgroup. 

One relation of interest is whether each dyad was in the same work group or not.  In 

Chapter 2, we created an actor-by-actor (i.e. 75 x 75) binary, symmetric matrix using 

Data>Partition to sets followed by Data>Affiliations (2-mode to 1-mode) and saved the 

dyadic data as “Same_work_groupRows”.  Notice that the unit of analysis is the dyad, and 

the dyad is characterized as being in the same group (coded 1) or not (coded 0).   

The other relation of interest is whether the members of the dyad are acquainted at the 

time of the last data collection (wave 4).  This matrix is the asymmetric actor-by-actor 

acquaintanceship data.  These data are also measured at the binary level. 
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We can measure the strength of association between being in the same work group and 

being acquainted, and test significance, using Tools>Testing Hypotheses>Dyadic 

(QAP)>QAP Relational CrossTabs.  The dialog is shown in figure 4.1. 

Figure 4.1. UCINET Dialog for Acquaintanceship at End of Course and Same Work Group 

Crosstab 

 

In the dialog, we used the browsing tool to locate each of the two relational (dyadic) 

matrices.  The number of permutations and random number seed defaults are fine (to 

recreate our output, use the seed above).  We elected to not save the output as a new 

dataset in this case by leaving “Output CrossTab” empty.  Figure 4.2 shows the output. 
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Figure 4.2.  UCINET Output for Acquaintanceship at End of Course and Same Work Group 

Crosstab 

 

The first panel of the output is the relational cross-tabulation itself.  It conveys that there 

were 4,364 dyads that reported no acquaintanceship tie that were also not in the same 

workgroup.  There were 300 dyads among students in the same workgroup that had no 

claim of acquaintanceship!  Of the students who claimed to be acquainted by the final 

exam, 192 pairs were in the same work group while 694 pairs were not.  Simple ratios 

demonstrate that the likelihood of being acquainted by the final exam is much higher for 

those in the same work group: 192/(300+192) = 0.39 vs. 694/(4,364+694) = 0.14. 

Given this simple joint count, the second panel of the output calculates various measures of 

association and tests for significant association using permutation tests.  The observed Chi-

square value in the cross-tab is 213.997.  Across the 2,000 cross-tabs generated from 

randomly permuted data, the average Chi-square statistic was 2.035, with a standard 

deviation (standard error) of 5.422.  Obviously, our observed chi-square is very unlikely to 

occur in random data.  The strength of the association, however, is not terribly impressive 

(the correlation is 0.20, for example).  Clearly, students placed in the same work group were 

more likely to claim that they were acquainted than those not in the same workgroups, but 

it doesn’t look like the group projects made a really big difference in building even weak-tie 

networks in the class! 
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As a second brief example, we can look at the stability of reported acquaintanceship over 

the four waves using Tools>Testing Hypotheses>Dyadic (QAP)>QAP Correlation and 

choosing all four waves.  The resulting Pearson’s correlation matrix is shown as figure 4.3. 

Figure 4.3. UCINET Generated Correlations of Acquaintanceship Relations over Four Waves 

 

As one would expect, the similarity of acquaintanceship structures declines with the length 

of period of time between measurements.  The largest shift in ties appears to occur 

between waves two and three.  Waves one and two are most highly correlated with one 

another, and the same is true for waves three and four. 

4.2.2 Valued Relations 

In many cases the relation between the members of a dyad is measured as a quantity, or 

“valued” relation.  Valued relations often indicate the strength of a tie, or some similarity 

between the two actors (perhaps their nearness or closeness in geographical or network 

space), or the probability that a tie is present.  The natural approach to seeing if two 

networks of valued relations are associated is to compute the correlation between the tie 

strengths in one relation with the corresponding tie strengths in the other relation. 

Two actors might be expected to be more similar (closer), or be more likely to form social 

ties if they are frequently co-present in social contexts.  That is, actors who have the same 

pattern of affiliation might be said to have a tie.  Using data on which classes each student 
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attended, we used the Data>Affiliations (2-mode to 1-mode) tool to create an actor-by-

actor matrix of the number of times (potentially 0 to 11) each pair of students had attended 

the same classes.  Dyads with higher values indicate a more similar attendance pattern for 

the students in the dyad.  The same procedure discussed in Chapter 2 (see the dialog in 

Figure 2.13) can be used to generate this dyadic data. 

Let’s say we’re interested in testing the idea that students who attend the same classes are 

likely to have similar patterns of exam performance.  So, again using the attribute data file, 

we also can calculate how similar the grades of each pair of students were by using the 

Data>Affiliations (2-mode to 1-mode) tool to create the correlation between students based 

on the three exam scores (check the box for “Correlation” in the “Affiliations: Convert 2-

mode to 1-mode data” dialog).  That is, two students are similar, or have a “strong tie” if 

there is high correlation between scores across the three tests. 

Figure 4.4 shows the dialog for calculating the QAP correlation between the similarity in 

attendance matrix and the correlation of tests matrix.  (Tools>Testing Hypotheses>Dyadic 

(QAP)>QAP Correlation).  Our research hypothesis is that students who have similar patterns 

of class attendance are likely to have similar patterns of grades. 
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Figure 4.4.  UCINET Dialog for Correlation between Two Networks  

 

The dialog simply asks that the two (or more) dyadic matrices be identified, and allows 

control over the permutations and saving the results, which are shown in figure 4.5. 
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Figure 4.5.  Dyadic Correlation of Similarities of Class Attendance and Similarity of Exam 

Grades 

 

Such a clever hypothesis – and such a disappointing result!  We see that there is a non-

significant, but negative, correlation between similarity of attendance profiles and similarity 

of exam grades (r = -0.0295, p = 0.2118, two-tail).  Across the 5000 random permutations, 

the average observed correlation was -0.0009, with a standard deviation (standard error) of 

0.03243.  The amount of overlap that two students had in the classes they attended appears 

to have nothing to do with achieving similar results on exams.  Note, again, that both of 

these variables are relational or dyadic, in that they describe the relation between two actors 

and not the attributes of the individual actors.

 

4.3 Prediction of Networks 

Cross-tabs and correlations are quite adequate for studying many interesting questions 

about dyadic association.  But, if we can treat one relation as dependent and the other(s) as 

independent, we can apply linear modeling to do prediction and partial association as well. 
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4.3.1 Binary Relations 

If the outcome relation is binary, a natural choice for prediction is binary logistic regression. 

Let’s re-visit the question of whether being placed in the same work group is associated 

with being acquainted by the end of the course.  The dependent outcome is the binary, 

asymmetric, matrix of each student nominating others as acquaintances.  The independent 

dyadic variable is being in the same work group, or not.  Figure 4.6 shows the dialog of 

UCINET’s Tools>Testing Hypotheses> Dyadic (QAP)>LR-QAP Logistic Regression (beta). 

Figure 4.6.  UCINET Dialog for QAP Logistic Regression of Wave 4 Acquaintanceship by 

Same Workgroup  

 

This is a very complicated looking dialog for such a simple question!  The reason is that 

there is much more in this tool than we will be using right now.  A bit later on, we will look 

at a more complex approach to modeling and prediction of networks – exponential random 
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graph (ERG) modeling.  The dependent relation or network is our non-symmetric (see the 

selection of symmetric/non-symmetric on the lower right in the dialog) wave 4 

acquaintanceships.  Our single “independent” network or dyadic variable is the matrix of “in 

the same work group.”  At present, we won’t use the “relational effect” or “attribute-based 

effect” parts of this tool.  Note that the regression output can be saved with the output file 

boxes at the bottom of the dialog. 

Figure 4.7 shows the output of our logistic regression model.  By the way, ERG models with 

permutation can take a rather long time to run.  So, be (reasonably) patient. 

Figure 4.7. UCINET Output for QAP Logistic Regression of Wave 4 Acquaintanceship by 

Same Work Group  

 

The output first reports the overall goodness-of-fit of the model.  The log-likelihood is 

given, along with the likelihood-based pseudo-R square statistic.  Note that the N is 5550, 

or the number of directed pairs formed by 75 nodes.   We can conclude that being in the 

same work group does affect the log-odds of naming another member as an acquaintance 

(the coefficient is significant; p = 0.001), but that this tendency explains a tiny proportion of 

the variation in likelihood of being acquainted (pseudo-R square = 0.039). 

The regression coefficients show the additive effects on log odds (Coef), or multiplicative 

effects on odds (OddsRat) of naming alter as an acquaintance.  The simple summary here is 

that being in the same work group as alter multiplies the odds that ego will name them as 
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an acquaintance by about 4 times (4.024).  The average regression coefficient in 10,000 

random permutations of the data was 0.028, and the standard error was 0.136. 

Since we are now working in the generalized linear modeling framework, there is no 

difficulty in adding additional variables as partial explanations or control variables.  In figure 

4.8, we’ve added whether an acquaintanceship was reported at wave 1, wave 2, or wave 3, 

as well as having similar attendance records and similar exam grades as additional 

predictors of acquaintanceship at the end of the course. 

Figure 4.8.  UCINET Output for QAP Logistic Regression of Wave 4 Acquaintanceship on 

Multiple Predictors 

 

The overall fit of the model is now very much better.  However, most of the improvement is 

due to including the presence of ties earlier in the term as predictors of ties at the end of 

the term.  Note that, while significant, the autoregression of current social ties on earlier 

ones has substantial collinearity and produces some very unstable results (UCINET’s routines 

do not include VIF or other collinearity statistics).  Our “test” variables can be interpreted as 

attempting to predict the presence or absence of ties that would not have been expected 

based on the trend in the development of ego’s network.  Having similar grades has no 

discernible partial effects at all.  Having a similar attendance profile is very slightly (but not 
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significantly) partially associated with being acquainted.  But, the positive effect of being in 

the same work group is strengthened somewhat by controlling for the other variables. 

The UCINET tool for predicting a binary dyadic dependent variable is quite easy to use for 

simple models.  The prediction of a binary dyadic relation from any combination of 

independent variables can also be approached with specialized software that takes graph 

structure into account (exponential random graph models), or multi-level generalized linear 

models.  We’ll return to these more general tools in later chapters.  In the example above 

(Figure 4.8), earlier observations were used as predictors of later relations; the data are 

actually panel data.  Specialized models for studying change in dyadic relational variables 

are also available (e.g. Siena). 

4.3.2 Valued Relations 

The same logic and approaches can be applied where the outcome dyadic variable is an 

interval-ratio level measure of dyadic tie-strength.  Figure 4.9 shows the dialog of the 

UCINET dyadic regression tool (Tools>Testing Hypotheses>Dyadic (QAP)>MR QAP Linear 

Regression>Original (Y Permutation) method). 

In this example, we are attempting to predict the correlation between the exam grades of 

the two members of each dyad based on the similarity of their attendance patterns. 

Figure 4.9.  UCINET Dialog for QAP Regression Predicting Grade Similarity by Common 

Attendance  
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The regression dialog is simpler, and has a slightly different appearance.  The dependent 

network is selected in the first box.  One or more independent dyadic variables (networks) 

are selected in the second.  Figure 4.10 shows the resulting output. 

Figure 4.10.  UCINET Output of Grade Similarity by Common Attendance  

 

The results are consistent with those found in Figure 4.5.  The model fit panel tells us that 

any association between similar grades and similar attendance could easily be explained by 

random processes (p = 0.388).  We really should not bother to look at the regression slope.  

If we did, we would note that the tendency in the data (a standardized slope of -0.03) 

contradicts our research hypothesis. 

However, there may be other factors suppressing the true relationship between attendance 

similarity and grade correlation so let’s add some control variables.  Figure 4.11 shows the 

multiple regression output of predicting similarity of grades from common attendance 

patterns, while controlling for being in the same work group and the presence of 

acquaintanceship at any point during the academic term. 
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Figure 4.11.  UCINET Output of Grade Similarity by Multiple Predictors 

 

The results are not impressive.  Looking at the overall goodness of fit, we should conclude 

that the similarity of the grades between ego and alter is essentially random with respect to 

these predictors.  Poking into the partial slopes (which we really shouldn’t do), we see that 

direct acquaintanceship ties only seem to matter at the beginning of the quarter – probably 

reflecting friendship relationships that existed before starting the class.  Being in the same 

work-group also appears to be associated with having more similar grades.  Just as in the 

bivariate model, attending the same classes is not associated with getting similar grades. 

 

4.4 Summary 

In this short chapter we’ve considered the question of how to study whether the pattern of 

one set of ties among a given set of actors is similar to the pattern of another set of ties 

among the same actors.  That is, the association of two (or more) networks. 

The approach that we’ve looked at here examines each network as a collection of the 

relations of all possible pairs (dyads) in the network.  This treats the dyad as the unit of 

observation, and the relation between them as the variable to be studied.  Approached this 

way, the conventional tools of tables, correlation, and regression can all be applied to the 

association between networks. 
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The inferential statistical question in examining the relationships among two or more 

networks is not really one of generalization to a population.   Rather, it is whether the 

observed degree of correspondence or similarity between two relations among the actors in 

a network could have happened by random processes.  So, for testing hypotheses about the 

relations among networks, the permutation method for estimating standard errors is ideal. 

The tools that we’ve looked at in this chapter are actually quite simple.  But, they can be 

useful for many interesting questions.  Later on, we’ll see more complex approaches 

(exponential random graphs models and multi-level models) to examining entire networks 

as dependent variables that allow for much more complex and interesting hypotheses. 

We’ve now looked at how to examine the association between two or more attributes when 

they are observed on actors embedded in a network (Chapter 3).  We’ve also looked at how 

to examine the association among two or more networks (this chapter).   

Logically, this raises the question of how one might study the association between attributes 

and networks – i.e. the association between nodal and dyadic relational variables.  Read on! 
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Chapter 5.  Association Between Attributes and Networks 

In the previous two chapters we looked at studying association between two or more 

attributes of actors in a network (Chapter 3), and at studying association between two or 

more networks (Chapter 4).  In this chapter, we’ll examine how to look at relationships 

between an attribute and a network. 

5.1 Attributes and Networks 

5.2 Categorical Attributes 

5.2.1 Two Groups:  Joint Counts 

5.2.2 Multiple Groups:  A Contingency Table Approach 

5.2.3 Multiple Groups:  ANOVA Density or “Block” Models 

5.3 Continuous Attributes 

5.3.1 Global Network Autocorrelation 

5.3.2 Local Network Autocorrelation 

5.3.3 Network Autocorrelation with Stata 

5.4 Summary 

5.5 References

 

5.1 Attributes and Networks 

What does it mean to examine the relationship between an attribute (node-level) variable, 

and a relational (dyadic-level) variable?  This sounds a bit abstract.  Let’s consider a couple 

of examples. 

Citing the “homophily” principle (birds of a feather flock together), we might suppose that 

the women students from the classroom data (see Chapters 2-4) would be more likely to be 

acquainted with other women students than with men students in the class, and that men 



 81 Statistical Analysis of Social Networks 

students were more likely to be acquainted with other men students.  A student’s gender is 

a nodal, or attribute, or monadic variable.  Whether acquaintanceships are woman-man, 

woman-woman, or man-man is a relational level variable.  The variation being described is 

between pairs of nodes, not individuals.  So, hypothesizing that there is gender homophily 

in relationships is actually making a prediction about the relationship between a nodal 

variable and a dyadic variable. 

Citing the “social learning” principle (people are likely to be influenced by, and learn from 

those with whom they have social ties), we might suppose that students who are acquainted 

may have more similar grades.  It may be that the students practice “network selection” in 

forming and breaking ties to increase similarity.  Alternatively, it may be that students with 

social ties influence one another to become more similar.  In either case, the correlation 

between students’ individual attributes (grades) is hypothesized to be a function of how far 

apart they are in the acquaintanceship network (which is a dyadic variable describing each 

pair of students). 

In SNA, hypotheses that link the individual level and network level of analysis are common.  

Individual social actors may “select” which ties to make or break based on their own (or 

others) attributes.  When social ties exist, individuals are influenced by the attributes of the 

others to whom they have ties.  In SNA, nodal attributes may be independent variables that 

determine how an actor becomes embedded in the network (which dyads they are a part 

of).  Nodal attributes may also be dependent variables that are affected by how the actor is 

embedded. 

In later chapters, we will take a look at modeling these kinds of influence and selection 

processes that connect individuals and their networks.  Often, our questions about the 

relation between an attribute and a network are quite simple and can be addressed with 

some rather simple tools.  We’ll look first at a variety of approaches that are helpful when 

the attribute in question is categorical.  For example, gender might be an independent 

attribute variable that affects the likelihood of acquaintanceship, or acquaintanceship might 

be an independent variable that affects test performance.   Then, we’ll look at a rather 



 82 Chapter 5.  Association Between Attributes and Networks 

different approach – borrowed from geo-statistics—that is helpful when the attribute being 

studied is interval-ratio. 

 

5.2 Categorical Attributes 

Some of the most obvious, and also most important, questions about attributes and 

networks ask whether pre-existing nodal attributes determine how individuals are embedded 

in a network.  Of course, the same kind of questions can be asked in reverse: to what extent 

does the way that an individual is embedded affect their individual attributes or behaviors. 

There are several approaches that one can take.  If the nodal attribute has two values (e.g. 

man or woman, passed the test or didn’t), a group-comparison approach can be used.  If 

the nodal attribute has multiple values (e.g. ethnicity, which work group a person was in, 

which letter grade they earned on the final), a cross-tab approach can be applied.  When 

the dyadic variable is either categorical or continuous, ANOVA density models or “block” 

models are a very interesting and useful approach. 

5.2.1 Two Groups: Joint Counts 

Let’s suppose that our nodal variable is binary, and that our dyadic variable is also binary.  

We’ll consider two examples.   

First, are there differences between men and women students in the gender of the others 

that they are acquainted with?  Here, our nodal independent variable is whether a person 

identifies as a man or a woman.  Our dyadic dependent variable is the count of the number 

of dyads that the individual is involved with that have a tie to a woman or a man.  Here’s 

how we can test this hypothesis using UCIENET’s Tools>Testing Hypotheses>Mixed 

Dyadic/Nodal>Categorical Attribute>Joint Count.  The dialog box used to set up the test is 

shown in figure 5.1. 
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Figure 5.1. UCINET Dialog for Testing Acquaintanceship Patterns by Gender 

 

This looks a little mysterious.  The “input dataset” is the location of the relational or dyadic 

variable of interest in the problem.  Here, we have selected the matrix that describes 

whether each individual does, or does not claim to be acquainted with each other individual 

at the end of the course (wave 4).  The “partition vector” is the column of the attribute data 

file that describes whether each individual is a man (coded 1) or a woman (coded 2).  This 

happens to be the second column of our attributes data file.   

To test whether there are differences between men and women in the likelihood that they 

form dyads with men or women, we will be using permutation tests, so the remaining parts 

of the dialog are defaults.  Now, consider the output, shown in figure 5.2. 
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Figure 5.2. UCINET Output for Testing Acquaintanceship Patterns by Gender 

 

The procedure forms a cross-tabulation (not displayed).  On one axis of the table is the 

attribute variable of whether the node is a man or a woman.  On the other axis of the table 

is whether the other member of the dyad is a man or a woman.  The output table 

“Expected” column shows the “joint count” of the number of man-man (1-1), man-woman 

(1-2) and woman-woman (2-2) dyads that we would expect to see if each respondent’s ties 

were distributed at random across all other persons (i.e. the number of each type of dyad 

we’d expect if the likelihood of a tie to a man or a woman was independent of ego’s 

gender).   The “Observed” column shows how many such dyads were actually observed in 

the data. 

In this example, we see that men students are more likely to affiliate with other men 

students than we would have expected under independence (they form 66 dyads with other 

men, rather than the 60 we would have expected if gender was irrelevant).  Women 

students display a tendency to fewer ties with other women students than we would have 

expected (187 observed, versus 193 expected).  However, differences this large in expected 
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and observed counts happen rather frequently in joint-counts formed from randomly 

permuted data (that is, randomly assigning cases to dyadic ties with men or women).  The 

p-level for man-man departure from independence is 0.264.  For woman-woman dyads, the 

p-level is 0.366. 

In a second example, let’s treat the individual attribute as dependent.  First, let’s divide 

individuals into a partition (attribute) that measures whether they did, or did not, achieve a 

score of 70% or better on the final exam.  This is an opportunity to demonstrate the power 

of UCINET’s Excel Matrix Editor.  First open the editor by choosing Data>Data editors>Excel 

Matrix Editor or by clicking on the Excel icon in UCINET’s button bar across the top of the 

main window.  Then choose Open>Open UCINET dataset and select the “Attributes_2011” 

file. In cell M1, create a new variable called “PassE3.”  This variable will be coded “2” if the 

student received a score of 70 or better on E3 and “1” otherwise (UCINET’s Joint command 

sometimes has problems with “0”s for dichotomous attributes, so it’s best to avoid them). In 

cell M2, type “=if(J2>=70,2,1)” and hit Enter.  Cell M2 now looks at cell J2 (which is student 

AD’s exam 3 score), checks whether it’s greater or equal to 70 (which it is) and codes either 

2 or 1 for pass or fail respectively (it should read “2”). Now select M2 again, grab the small 

black square in the lower right corner and drag the cursor all the way down until you stop 

on cell M76.  This now follows the same procedure for every student in the class and our 

new variable, PassE3, is ready to be used.  Now save the data as a UCINET dataset and call 

it “Attributes_2011-PassE3,” to be used shortly. 

For our independent variable, we’ll use a dyadic matrix that shows whether each pair of 

students were (coded “1”) or were not (coded “0”) in the same workgroup.  We already did 

this in Chapter 2, where we created an actor-by-actor (i.e. 75 x 75) binary, symmetric matrix 

using Data>Partition to sets followed by Data>Affiliations (2-mode to 1-mode) and saved 

the dyadic data as “Same_work_groupRows”.  Our research hypothesis is that students who 

are in the same workgroup are more likely to achieve similar outcomes on the final exam. 



 86 Chapter 5.  Association Between Attributes and Networks 

The dialog is the same as in figure 5.1, with “Same_work_groupRows” specified as the input 

dataset (dyadic variable), and “"Attributes2011-PassE3" col 12” (pass/fail on the exam) as the 

partition vector (nodal variable).  The output is shown in figure 5.3. 

Figure 5.3.  UCINET Output Testing if Being in the Same Work Group Affects Passing the 

Final Exam 

 

The “1-1” row shows dyads where both members failed the exam.  There were 64 such 

dyads, slightly fewer than the number we would have expected under the null hypothesis of 

independence.  Evidence against our theory.  The “2-2” row is the count of dyads where 

both students passed the exam.  There were significantly fewer (46) dyads than we would 

have expected under independence (53).  And, the row “1-2” shows that there were 136 

pairs where one member passed and the other failed.  This happened more frequently than 

we would have expected under independence.  It looks like we were wrong.  If anything, 

there is a tendency for members of the same work groups to have different, rather than 

similar exam outcomes! 

To reprise:  in these examples we are examining whether there is an association between 

individual attributes and the frequency of involvement in dyads of particular kinds.  In the 
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first example, the individual’s attribute was the independent variable, gender, and the dyadic 

attribute was the gender mix of the dyads that they were embedded in.  In the second 

example, the individual attribute of interest was dependent: whether the individuals involved 

in the dyad passed or did not pass the exam.  The independent variable was the dyadic 

variable of being in the same work group or not. 

5.2.2 Multiple Groups:  A Contingency Table Approach 

We can expand the same kind of thinking to cases where the partition or attribute variable 

contains multiple categories.  That is, we can look at the association between a dyadic or 

relational variable and a multi-valued attribute or nodal variable. 

Let’s ask whether there is an association between which workgroups students were assigned 

to, and whether there are ties between them.  Students were assigned to one of ten groups 

(a nodal variable), and were acquainted or not with each other student by the end of the 

term (a dyadic variable).  We hypothesize that students are likely to have a higher density or 

probability of forming dyads with other members of their work group.  Figure 5.4 shows the 

dialog for the UCINET “relational contingency table” tool (Tools>Testing Hypotheses>Mixed 

Dyadic/Nodal>Categorical Attribute>Relational Contingency Tables). 

Figure 5.4. UCINET Dialog for Testing Acquaintanceship Differences among Work-Groups 
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The “input dataset” is the square student-by-student dyadic acquaintanceship relation (we 

use wave 4, taken during the final exam).  The “attribute” or categorical nodal variable is 

column 3 from the 2011 “Attributes” dataset, which contains the number of the work group 

to which each student was assigned.  Again, there are controls for the permutation trials, 

and the option to save parts of the output as datasets for further processing.  Figures 5.5.1, 

5.5.2, and 5.5.3 show the full (somewhat lengthy) output. 

Figure 5.5.1. UCINET Output for Testing Acquaintanceship Differences among Work-Groups 

(Part 1) 
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First we see the frequencies of the partition (work group number) variable.  The groups 

varied in size between 6 and 8 students each.  Next, we see the raw frequencies of the 

dyads formed by students in each group (row) with students in their own and other groups 

(column).  For example, the students in group 1 claimed acquaintances 22 times with other 

members of their own group, only twice with a student from workgroup 2, eleven times with 

students in workgroup 5, and so on. 

Note that the main diagonal looks pretty dense.  That is, it looks like there is a tendency for 

students in each group to form dyads with other students in their same work-group.  Also 

note that this tendency toward “homophily” isn’t the same across all work groups (note the 

diagonal value for group 4). 

Figure 5.5.2. UCINET Output for Testing Acquaintanceship Differences among Work-Groups 

(Part 2) 
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This part of the output doesn’t require much explanation.  The expected counts under the 

null hypothesis of independence are displayed in the top panel and the ratio of observed to 

expected counts in the second panel.  These are typical components of a chi-square based 

measure of association. 

Figure 5.5.3. UCINET Output for Testing Acquaintanceship Differences among Work-Groups 

(Part 3) 

 

The penultimate bit of the output shows the expected counts under independence – that is, 

the mean counts observed across 10,000 runs with random assignment of students to 

workgroups.  The differences between the observed and expected counts form a chi-square 

statistic (443.1).  Using the sampling distribution from the permutation experiments, chi-

squares this large are observed about one time in 10,000 for random trials. 

So, we have strong evidence that there is an association between which work group a 

student is in (the nodal variable), and the probability that they are acquainted with a student 

sharing the same attribute (the dyadic variable).  This result might be quite sufficient for 

many questions.  But, we might want to go a bit further and explore the actual form of the 

association.  ANOVA density models or “block” models are useful tools for this task. 
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5.2.3 Multiple Groups:  ANOVA Density or “Block” Models 

Under the homophily hypothesis, two students who have the same score on an attribute (in 

this case, being affiliated with a particular work group) may be more likely to know each 

other (have a dyadic relationship) than two students who do not have the same attribute.  If 

this is the case, then the density of ties among the students in the same work group 

(regardless of which group it is) ought to be higher than the density of ties of students 

between students who are not in the same work group. 

Imagine that we take our original student-by-student acquaintanceship matrix and re-

arrange (permute) the rows and columns so that all the students in workgroup 1 are 

together, followed by workgroup 2, etc.  We’ve “blocked” the matrix according to the 

“partition” of work-group.  The blocked matrix is 10 by 10 groups. 

Next, let’s count up all of the ties that exist in the blocks that fall along the main diagonal 

(that is, the block of group 1 with group 1, group 2 with group 2, etc.), and divide them by 

the number of possible ties.  This is the mean, or probability that two actors who are in the 

same workgroup are acquainted. 

Then, let’s count up all the ties between pairs of students who are not in the same work 

groups, and express this as proportion or mean of all possible ties that could have existed 

among these students. 

We now have two groups (dyads in the same work group; dyads not in the same work 

group), and we can perform a test of differences of means, or one-way ANOVA.  Figure 5.6 

shows how to perform this particular two-group, one-way, ANOVA with UCINET’s 

Tools>Testing Hypotheses>Mixed Dyadic/Nodal>Categorical Attribute>ANOVA Density. 
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Figure 5.6. UCINET Dialog for Testing Acquaintanceship by Workgroup using a Constant 

Homophily Block Model  

 

As always, there are controls for the permutation tests, and for saving parts of the output as 

UCINET files for further processing.  We select our acquaintanceship dyadic data (it’s being 

treated here as the dependent variable), and the vector of work group affiliation from the 

attributes file (it happens to be the third column in that file). 

The important part is the “Model,” where we’ve chosen “Constant Homophily.”  The 

hypothesis that we have been discussing suggests that there is a difference in the likelihood 

of a tie between two actors in the same workgroup from the likelihood of a tie between two 

actors who are not in the same workgroup.  Returning to our acquaintanceship matrix that 

has been blocked by workgroup, we are saying that the mean densities of all the blocks on 

the main diagonal (i.e. densities of ties to others in the same workgroup) are the same, and 

that the densities of all of the blocks not on the main diagonal (i.e. densities of ties to 

others outside of one’s group) are the same – and that these two densities differ.  That is, 

there is a tendency toward homophily (the diagonal blocks differ from the non-diagonal 

blocks), and this tendency is constant across work groups (the density of ties within 

workgroup 1 is the same as the density of ties within workgroup 2, etc.).  If we expected the 

tendency toward homophily to vary by work group, we could choose “Variable Homophily” 
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instead.  If we were interested in tendencies for out-group tie formation (vs. the in-group 

tendencies assumed in homophily assumptions), we would choose “Structural Blockmodel.”  

Figure 5.7 shows the output for our constant homophily model. 

Figure 5.7. UCINET Output for Testing Acquaintanceship by Workgroup using a Constant 

Homophily Block Model 

 

The first portion of the output shows the block densities actually present in our data.  That 

is, it shows the mean density (or with a binary variable, the probability) of a tie between any 

two actors within a given block.  For example, two students in work-group 1 have a 0.393 

chance of having a tie, while the probability of a tie from a student in group 1 to group 3 is 

only 0.063.  Just looking at the data, we see that the densities on the main diagonal 

(homophilic ties) are generally higher than those off of the main diagonal.  We also should 
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note that the densities of the blocks on the main diagonal are not very “constant” or similar 

to one another.  Different work-groups have rather different degrees of homophily. 

The next panels of the output describe how well the constant homophily block model does 

in explaining or predicting ties between pairs of actors.  The answer is:  not very well.  

Classifying dyads as being either within the same work group or not in the same workgroup 

explains about 4% of the variance in the probability that there is a dyadic tie.  Note, 

however, that the permutation trials test very strongly suggests that workgroup homophily 

does have an effect (p < 0.0001). 

The last part of the output shows, and tests, specific mean differences as regression 

coefficients (or effects in ANOVA language).  We see that the mean probability of a tie 

between two students who are not in the same workgroup (the reference category or 

intercept) is 0.137.  The probability of a tie between two students who are in the same work 

group is 0.253 higher, or 0.39.  We see that this is a significant difference.  Even though the 

variance explained is not high, being in the same work group more than doubles the 

probability of a dyadic tie between two students. 

The constant homophily block model expresses a pretty strong hypothesis that suggests 

that there are no meaningful differences across workgroups in their tendency toward in-

group tie formation.  It also suggests that the bias against out-group acquaintances are the 

same, regardless of the out-group.  An alternative model might propose that the bias 

against ties outside ones group are the same for all outsiders, but that groups differ in their 

tendency toward in-group ties.  This hypothesis is selected by choosing the “variable 

homophily” block model in the dialog (figure 5.6).  The output for this model is shown in 

figure 5.8. 
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Figure 5.8. UCINET Output for Testing Acquaintanceship by Workgroup using a Variable 

Homophily Block Model 

 

We see that the variable homophily model provides an improvement in fit (R-squared is 

0.058, up from 0.039).  The result is very unlikely to arise from random processes, but the 

model does not account for very much of the variation in who is acquainted with whom. 

This improvement in fit has been bought at the expense of 9 additional parameters.  Now, 

the tendency toward homophily in each of the 10 workgroups is allowed to differ from the 

intercept (which is the probability of a tie with an out-group student).  The groups vary 

considerably in their tendency toward internal ties, as we see from the slopes describing 

how the density within each significantly differs from the intercept (group 4 and group 10 

being exceptions). 

The variable homophily block model allows for differences among groups in their preference 

for in-group ties.  It treats all ties outside one’s own group as homogeneous.  We can take 

the final step of relaxing this assumption with the “structural block model” option in the 

ANOVA density models dialog.  Only a portion of the lengthy output is shown in figures 5.9. 
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Figure 5.9. UCINET Output for Testing Acquaintanceship by Workgroup using a Structural 

Block Model 

 

The structural block model allows each of the 10 by 10 blocks to vary in density.  The 

variance explained by allowing variation in the external tie densities is relatively substantial 

(up to 9.5% from 5.8%).  But, the gain is bought at the expense of 99 degrees of freedom.  

Every one of the 10x10 blocks is deviated from the last block (group 10 ties with group 10). 

The ANOVA density, or “block” model allows fitting a variety of hypotheses about how a 

categorical attribute partitions (or blocks, or relates to) a relational (dyadic) variable.  The 
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relational variable can be either binary, as in our example, or continuous.  For example, the 

relational variable might express the strength of ties in dyads, or it might express the 

network distance between two actors.  So, block modeling can be used with categorical 

attributes and either categorical or continuous relational variables. 

 

5.3 Continuous Attributes 

In looking at the relationship between an attribute and a network, when the attribute of 

interest is continuous, spatial autocorrelation methods can be used.  These methods are 

borrowed from geographical analysis, and are adapted to use “social distance” between 

actors in a network, rather than spatial distances. 

The type of question that we are addressing here is whether actors who are closer to one 

another in a network are likely to have the same score on an attribute.  For example, we 

might ask whether students who know one another have similar exam scores.  Questions 

like this one lie at the core of social influence theory, where it is hypothesized that the 

stronger the ties are between two actors, the more likely they are to converge in attitudes 

and behaviors as they model on and influence one another. 

The core idea of network autocorrelation is that the correlation between the attributes of 

two members of a dyad covaries with the distance or strength of the tie between them.  

The basic method for assessing this is, logically, pretty simple.  For each dyad, the individual 

nodal scores of both actors on some attribute are recorded (for example, the final exam 

scores of AD and AJ).  Some measure of the strength of the tie or of the network distance 

between the two actors is generated (for example, say that the geodesic distance from AD 

to AJ is two steps of acquaintanceship, details below).  The scores on the attribute of the 

two members of the dyad are then correlated across dyads, but weighted according to 

closeness or strength of the tie between them.  The result is a distance-weighted correlation 

that tells us whether two actors who are close together are likely to have similar scores on 

the attribute (positive autocorrelation, most common) or are likely to have dissimilar scores 
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on the attribute (negative autocorrelation), or if distance is irrelevant to the correlation 

between the scores of the members of dyads. 

To examine autocorrelation, we need the attribute of interest for each actor.  This is simply 

the attribute vector (e.g. test scores).  We also need a measure of the distance between the 

two actors, so that we can “weight” the data.  These weights are a dyadic variable describing 

the distance or strength of the tie between the members of the dyad. 

In spatial autocorrelation applications (from which SNA appropriated these methods), the 

distance between two nodes (say locations on a map) is a fairly straightforward idea 

(actually, geo-spatial approaches to distance can be quite subtle, interesting, and complex).  

But, how do we measure “social distance?”  There is no single best answer, but consider 

some possibilities. 

One possible measure of dyadic distance for autocorrelation weighting is social similarity 

(such as distance in “Blau-space”; McPherson & Ranger-Moore, 1991).  A dyadic variable 

could be created that measures similarity across a variety of attributes, or similarity in 

patterns of affiliation, for each pair of actors.  Scaling, clustering, and index construction 

methods might then be used to calculate a “similarity” matrix for dyads. 

Another, more concrete approach to creating distance weights is to see how far apart two 

actors are in a social network, directly.  If AB names AJ as an acquaintance, the distance 

between them is 1 step.  If AB names AJ and AJ names BL (and AB does not name BL), then 

the distance between AB and BL is 2 steps.  Geodesic distance (the length of the shortest 

path from one actor to another) is a common approach and can be directly generated by 

UCINET (Network>Cohesion>Geodesic Distances). 

Of course, the adjacency matrix can also be used directly.  In this case, the distance between 

two actors in a network is either zero or one.  Or, if the ties were measured on a continuous 

scale of strength, the matrix of tie strengths can be used directly. 

For our example, we’ll define the distance between two students as the length of the 

geodesic path between them.  But, since we would like a positive autocorrelation to mean 
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that similarity increases with nearness (not distance), we will need to reverse the direction of 

the weights.  We could simply subtract each distance from the maximum distance to 

measure closeness rather than distance.  But, we are going to take the reciprocal of the 

geodesic distance instead.  The reciprocal of the geodesic distance not only indexes 

“nearness,” but it also scales the data so that influence declines at an accelerated rate as 

distance increases (adjacent actors get a weight of 1/1 or 1.0; actors at a distance of two get 

a weight of 1/2 or 0.5, etc.). 

Figure 5.10 shows the dialog for generating nearness (inverse distance) weights for our 

acquaintanceship data at the time of the final exam in UCINET by asking for geodesic 

distances (UCINET>Network>Cohesion>Geodesic Distances), rescaled by taking the 

reciprocal.   

Figure 5.10. UCINET Dialog Used to Generate Inverse Geodesic Distances for Wave 4 

Directed Acquaintanceship 

 

 

We can save the dyadic nearness variable that we’re creating as a new dataset and take the 

default name.  Notice that we’ve marked the circle “1/N” in order to produce reciprocal 

distance values.   
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A portion of the nearness weights matrix is shown in Figure 5.11.  We can also see from the 

figure that the most frequently occurring nearness weight is 0.5 which corresponds to a 

degree of 2. 

Figure 5.11. UCINET Output for the Inverse Geodesic Distances of Wave 4 Directed 

Acquaintanceship 

 

For network autocorrelation methods, a distance weighting matrix is needed.  It is a dyadic 

variable that measures how similar, strong, or close the tie is between each pair of actors.  

As you can see, measuring the social distance between the two members of a dyad might 

be done in a wide variety of ways.  And, as you can readily imagine, how one defines 

distance and creates a nearness weighting matrix can dramatically affect the results of an 

analysis.  Our example is only one possible approach. 
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Once we have decided what attribute we want to test for network autocorrelation, and once 

we have created a distance or nearness weighting matrix, it is quite simple to generate 

some standard measures of network autocorrelation in UCINET (UCINET>Tools>Testing 

Hypotheses>Mixed Dyadic/Nodal>Continuous Attributes>Moran/Geary statistics).  Figure 

5.12 shows the dialog. 

Figure 5.12. UCINET Dialog for Network Autocorrelation  

 

In the first box of the dialog, the nearness weights dyadic variable is identified.  Note that 

any dyadic variable could be used – measures of social similarity, joint affiliation, as well as 

geographic or network distance.  In the second box of the dialog the attribute that we want 

to examine for autocorrelation is identified.  Here we identify column nine of the attribute 

dataset: student’s grades on the final exam (an interval/ratio variable).  Distance (or 

nearness) weighted autocorrelations can, of course, be calculated for binary or ordinal-scale 

attributes, but the correlation measures were intended for continuous attributes. 

5.3.1 Global Network Autocorrelation 

There are quite a number of measures of spatial autocorrelation that have been developed, 

primarily by geo-scientists (Getis and Ord, 1992; Griffith, 1987).  UCINET provides the two 

most commonly used:  Moran and Geary indexes.  The Moran index (and some others, as 

we will see below) summarizes the global pattern of autocorrelation over the entire network.  
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That is, it looks across the whole network, seeking broad patterns.  In our example using 

final exam grades, the Moran index is “looking” for big regions of the network that are 

occupied by mostly high scoring students and other big regions, or network neighborhoods, 

or communities that are composed mostly of low scoring students.  The Moran index is 

somewhat less sensitive to an individual’s immediate neighborhoods. 

In figures 5.13 and 5.14 the output of Tools>Testing Hypotheses>Mixed 

Dyadic/Nodal>Continuous Attributes>Moran Geary Statistics is shown (selecting the Moran 

statistic) using two different measures of nearness.  In the first run (shown in figure 5.13), we 

use simple adjacency (A is acquainted with B, or not) as our measure of the network 

closeness or nearness weight.  The “network or proximity matrix” used to generate the 

output in figure 5.13 is our wave 4 acquaintance data (“wave4_2011”).  In the second run 

(figure 5.14), we use the reciprocal of the geodesic distance as our nearness weights 

(“wave4_2011-geo”).  The dialog box shown in figure 5.12 generates the output shown in 

figure 5.14. 

Figure 5.13. UCINET Output for Network Adjacency Autocorrelation of Final Exam Grades 

(Moran Index) 
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Figure 5.14. UCINET Output for Network Inverse Geodesic Distance Autocorrelation of Final 

Exam Grades (Moran Index) 

 

Interpreting the Moran statistic is a bit tricky in our case.  Larger negative values of the 

Moran statistic indicate positive autocorrelation (here, a tendency for students with similar 

final exam scores to be adjacent or at shorter distances in the network) because we are 

using nearness weights rather than the typical use of distance.  Significance tests are 

performed, as usual, using permutation (randomly shuffling the attribute scores). 

When nearness is defined strictly as adjacency (Fig. 5.13), we see a modest positive 

autocorrelation (Moran statistic = -0.079) that is significant at the p = 0.05 level.  When we 

apply inverse distance weights (Fig. 5.14), including indirect alters, the positive 

autocorrelation is weaker (-0.024). 

In either case, we see a weak, but probably non-random, tendency for the network as a 

whole to display communities, regions, or neighborhoods occupied by students with similar 

grades on the final exam.  There is some evidence that knowing one another and having 

similar grades are weakly associated. 

5.3.2 Local Network Autocorrelation 

The Geary statistic is constructed somewhat differently from the Moran, and places a greater 

emphasis on local patterns in the network.  Rather than focusing on the network as a whole 



 104 Chapter 5.  Association Between Attributes and Networks 

and looking for large regions of similar actors, it focuses on each actor’s local ties and then 

aggregates local autocorrelations into a global average.  Figures 5.15 and 5.16 show the 

Geary autocorrelations of student’s grades where nearness is defined as adjacency (figure 

5.15) or the reciprocal of geodesic distance (figure 5.16). 

5.15. UCINET Output for Network Adjacency Autocorrelation of Final Exam Grades (Geary 

Index) 

 

Figure 5.16. UCINET Output for Network Inverse Geodesic Distance Autocorrelation of Final 

Exam Grades (Geary Index) 
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The Geary statistic is a somewhat odd metric.  With Geary, more positive values indicate 

larger positive autocorrelations because we are using nearness matrices rather than the 

typical distance matrices used in geospatial analyses.  However, the statistic ranges from 

zero, indicating perfect negative autocorrelation, to +2.0, indicating perfect positive 

autocorrelation.  A value of +1.0 indicates no autocorrelation.  Our values of 0.938 and 

0.986 reported in our results, indicate a very slight negative autocorrelation, on the average, 

among the neighborhoods of individual students, but the effect is not significant in either 

case. 

The values for the Geary statistics for both models of nearness are in the opposite direction 

from the Moran values.  But, the Geary statistic does not reach statistical significance (at the 

p = 0.05 level) in either model.  As with the Moran statistic, the magnitude of 

autocorrelation is stronger using simple adjacency, rather than inverse geodesic distances.  

This may not be surprising for many social influence processes (e.g. what our friend thinks 

of us is important, but what a friend of a friend thinks of us may not be relevant). 

5.3.3 Network Autocorrelation with Stata 

UCINET provides quick and easy calculation of the two most commonly used spatial 

autocorrelation measures, and good tools for constructing distance-weighting dyadic 

variables.  Other software is available that can calculate additional measures of 

autocorrelation, and more importantly, use autocorrelation in predictive regression models.  

Maurizio Pisati (2001, 2012) has built a set of routines in Stata that are helpful for these 

tasks.  Here, we’ll briefly illustrate how to use these tools for calculating measures of 

autocorrelation.  In the next chapter, we will apply them to regression models that include 

network autocorrelation. 

First, we need to locate and download the toolkit that Pisati has built by doing a findit in 

Stata.  The components that are needed are spatwmat (which imports a distance weights 

matrix and calculates the needed eigenvectors), spatgsa (which calculates the Moran 

measure of global spatial autocorrelation), and spatlsa (which calculates local versions of the 

Moran measure for individual neighborhoods).  The library “spatreg” (which performs spatial 
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autoregression models) will be used in the next chapter.  Stata help files come with the 

libraries, and can be viewed with the help command (help spatwmat for example) after the 

libraries are installed. 

Second, we need to create Stata data files (i.e. “.dta” files) for our attribute (student grades), 

and social distance weights (we’ll use the reciprocal geodesic distances for our illustration).  

First, make sure that the rows and columns of the distance weights data are in the same 

sort order, and that the sort order agrees with that of the attributes dataset.  Then, one can 

cut-and-paste, or use exports and imports to create two data sets in Stata.  Figures 5.17 and 

5.18 show partial screenshots of our two datasets. 

Figure 5.17.  Stata Data Editor Displaying Attributes Data Stored as a “.dta” File 
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Figure 5.18. Stata Data Editor Displaying Distance Weights Matrix Stored as a “.dta” File 

 

Note that the variable names (names of the nodes) are not included as a variable in the 

distance file, which has arbitrary variable names. 

The third step of the process is to run spatwmat to generate the necessary formatted 

distances and store them in a temporary file in the working directory.  Figure 5.19 shows 

how we did this step. 

Figure 5.19. Stata Syntax for Running spatwmat Command 

 

The Stata command tells the processor to run spatwmat using the distance weights Stata 

file we created (“wave4_2011-geo.dta”).  After the comma (which delimits options in Stata), 

is the required option of name(), where you provide a name for the temporary weights file.  
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We called ours “invgeo_wt.”  Spatwmat reports that it created a non-binary weights matrix 

of 75x75.   

Finally, we are ready to calculate measures of global autocorrelation for the variable “E3” 

which is the score on the final examination.  Figure 5.20 shows how this is done.  Note this 

must be done in the same working session where we create the temporary data file with the 

weights! 

Figure 5.20. Stata Syntax and Output for Global Autocorrelation of Final Exam Using spatgsa 

 

The Moran statistic is negative, indicating a positive global autocorrelation of student’s 

grades on the final exam.  The value calculated in Stata (-0.024) is identical to the one 

calculated in UCINET to at least three decimal places (see Figure 5.14).  The significance 

level reported by Stata, however, is slightly more conservative than the UCINET result.  

Minor differences are not unusual given the use of permutation trials.  

Calculating the local version of the statistic can be done in the same working session with 

spatlsa, as shown in figure 5.21. 
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Figure 5.21. Stata Syntax and Output for Local Autocorrelation of Final Exam Using spatlsa 

 

The syntax of the command is typical Stata:  the procedure and variable list (multiple 

autocorrelations can be done in the same run) come first, followed by options after a 

comma.  Here, the name of the weights matrix is supplied, the Moran statistic is specified 

(others are available, including Geary), the case name variable is identified to label the 

output, and a sort in order of decreasing positive autocorrelations is requested. 

From the output, we see that the node WJ has an extremely strong positive autocorrelation 

of grades in his/her neighborhood, for example.  The local autocorrelation of grades for 

each actor can be treated as an attribute of that actor describing something about the way 

in which they are embedded in the network.  Indeed, one might think of the strength of the 

autocorrelation of grades as an indicator of the extent to which the actor has built ties with 

similar others, and/or been influenced by their neighbors.  This is one way in which we 

might proceed to measure the degree of social influence on ego with regard to predicting 
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ego’s grade on the final exam.  That is, ego’s grade on the final exam might include a 

measure of how much ego is being influenced by his/her neighbor’s exam grades.

 

5.4 Summary 

In this chapter we’ve had a look at some simple methods for examining the association 

between dyadic and nodal variables (i.e. social relations or networks and attributes).  

Analyses like the ones discussed here cross “levels of analysis” and involve both the 

attributes of the two individual nodes involved in a relationship, as well as information 

about the structure of the network in which they are embedded. 

In analyses that include both individual attributes and network relations, our interest may 

focus on either as the dependent variable. 

Sometimes we are primarily interested in how the ways in which actors are embedded in 

networks provide constraints and opportunities that shape or socially influence their own 

attitudes and behaviors (“social influence” models, Chapter 6).  Sometimes we are interested 

in how individual attributes affect the processes by which social structures are selected or 

built by making and breaking connections (“network selection” models, Chapters 7 and 8).  

In many cases, both kinds of processes are occurring simultaneously as networks and the 

individuals that they connect co-evolve (Chapter 9).    

In the remaining chapters, we’ll focus on modeling for these types of processes. 
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6.1 Individual Attributes as Outcomes 

A key insight of SNA is the seemingly obvious idea that an individual’s attitudes and 

behaviors are affected by the attitudes and behaviors of those to whom the actor is 

connected.  In order to understand or predict ego’s attributes then, we need to take 

processes of social learning and social influence into account.  The processes of learning, 

influence, and diffusion are all action on social networks. 

In this chapter we’ll look at some ways that social influence can be incorporated into 

statistical models that predict individuals’ attributes and behaviors as outcomes.  Models of 

this type include both the individual’s own attributes, and the attributes of those to whom 

an individual is tied to as predictors.  Models of how an individual’s attributes may affect 
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outcomes are commonplace, if not important.  For example, women may be more likely to 

vote than men.  What social network analysis adds to explanations of this type are the 

effects of social learning and influence.  For example, while women may generally be more 

likely to vote than men, women who have more friends that are women might be even 

more likely to vote than those who have less gender homophilous networks. 

The challenges of including information about ego’s network in explanations of ego’s 

behavior are more conceptual and theoretical than they are methodological.  Models of 

individual outcomes for actors embedded in networks use individuals as units of analysis, 

and use conventional general linear modeling approaches.  Data about how ego’s network 

affects ego’s behavior are included as attributes of ego – though they measure structural 

properties of the graph.  For example, assuming that gender is predictive of voting behavior, 

when explaining whether a person votes or not, one might very well want to include 

information about the size of ego’s friendship network as well as the proportion of women 

in their friendship network. 

In many cases, the most important attribute of ego’s network is whether the alters in the 

network display the behavior or attitude in question.  If we want to explain variation in 

voting, we would probably hypothesize that as the number or proportion of ego’s neighbors 

who vote increases, the likelihood that ego will vote increases.  The technical term for this is 

“network autoregression.”  This is the tendency for a node to have scores on the dependent 

variable that are more similar to those of their network neighbors than to random others as 

a result of causal processes (social learning, influence, diffusion, etc.).  Network 

autoregressive processes are modeled by including measures of the prevalence of the 

outcome in ego’s neighborhood.  Sometimes we may wish to include indirect, as well as 

direct influences.  For more complex processes operating over broader social space, “spatial 

lag” models may be helpful. 

There is also the possibility that a positive autocorrelation between ego and ego’s close 

neighbors arises from local “error” or unobserved latent variables affecting both ego and 
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alters.  One may overstate the significance of autoregression (social learning or influence) in 

the presence of spatially autocorrelated error. 

Below, we’ll first take a look at some common approaches to incorporating information 

about how an individual is embedded in a network into models predicting an individual’s 

attitudes or behavior.  Many social learning and social influence processes that operate only 

locally to produce autoregression can be specified fairly easily.  For influence processes that 

operate over somewhat broader social spaces, we may wish to borrow spatial autoregressive 

modeling approaches from econometrics and geostatistics.  And, finally, we’ll take a look at 

how spatially autocorrelated error or mis-specification can be controlled. 

 

6.2 Preparing for Analysis 

Setting up the data for analyses that predict the attributes of nodes is fairly straightforward.  

Most analyses represent independent variables as attributes of the individual, and use 

regular generalized linear modeling, with permutation test approaches to assess significance.  

We’ll talk first about some typical kinds of predictor variables such as other attributes of the 

individual along with measures of how they are embedded in the network.  Then we’ll 

discuss spatial weights, which are necessary for social-spatial autoregressive and 

autocorrelated error models. 

6.2.1 Dependent Variables:  Levels of Measurement and Distributional Shapes 

Models of network influence usually focus on some time-varying attribute of individuals, 

such as attitudes, behaviors, or conditions.  We might be interested in examining the role of 

network influence on attitudes toward some issue.  Do people who have many friends who 

believe that the earth is flat, also tend to believe it is flat?  Sometimes behaviors are the 

focus.  Are students who are friendly with other students who have poor academic 

performance more likely to perform badly themselves?  And, sometimes we might focus on 

some kind of material condition.   Are the social networks of people who own Lamborghini 

automobiles likely to contain others who also own these?  Recently, and controversially, it 
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has been suggested that happiness and depression may be transmitted by way of social 

networks. 

The outcome in our models is an attribute of individuals, and can be scaled at any level of 

measurement.  Depending on how the dependent variable is measured, appropriate versions 

of distributional family and link functions of generalized linear models can be used (except 

for spatial autocorrelated error and spatial autoregression models which have somewhat 

more limited software at this writing).  In our examples, we’ll focus on two measures of the 

academic success of our students.  As a binary measure, we’ll examine which factors may 

affect whether the student passed or failed the final exam (that is, earned a grade of 70% or 

more).  As a continuous measure, we’ll focus on the same final exam, but analyze the actual 

score earned. 

6.2.2 Independent Variables:  Attributes 

Conventional (non-SNA) models of attitudes and behavior focus on individual level factors 

as predictors.  For example, men and women may be expected to differ on an outcome, 

people of different ethnicities or religions may be hypothesized to vary, etc.  Individual 

attributes are used in social influence analyses in exactly the same ways, and there is 

nothing much more to say about them here.  Individual attributes are simply coded and 

entered as they might be in any other analysis (see Chapter 3). 

In our student data that we introduced in Chapter 2, we don’t have very much information 

about the individual attributes of the students.  Only self-identified gender and ethnicity 

were recorded.  We might predict that women students would out-perform men students 

on the final exam in our class, as they tend to do in most classes, due to differential 

socialization and selection processes that occurred prior to entering our course.  Similarly, 

we might expect differences by ethnicity. 

6.2.3 Independent Variables:  Measures of Network Embedding 

Conventional analyses of an individual’s attitudes and behaviors rarely pay much attention 

to explicitly measuring variations in an individual’s social networks.  SNA, of course, focuses 
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on describing and indexing variation in the ways that individuals are embedded in networks.  

People who have many friends may be easier to reach with a message than those who are 

less connected.  Actors who are tied to others who are tied to one another may be more 

difficult to convert because of strong countervailing pressures.  Actors who are embedded in 

networks that are highly homophilous may be more subject to conformity pressures.  Actors 

who are key-players, or central and prominent figures in networks, may be more likely to 

have conventional attitudes and behaviors. 

Social influence models may include a number of different measures about how an actor is 

connected as predictors of their attitudes and behaviors.  Just like the attribute variables 

discussed above, these measures of network embedding are nodal variables describing the 

ways in which the nodes of a network are embedded.  The authors of the UCINET software 

have provided tools that are useful for building variables that describe how nodes are 

embedded in the network.  Taking a brief look at these tools suggests some common types 

of network-contextual variables that one might want to include in an analysis.  The UCINET 

tools also have the advantage of calculating numerous network measures that are saved as 

files, and can be appended to our attribute file for use as predictors. 

Network>Multiple Measures> Node Level produces a number of measures of how 

connected nodes are, their distance from other nodes in the network, and their centrality 

(defined in a variety of ways).  Figure 6.1 shows the dialog. 
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Figure 6.1. UCINET Dialog for Node Level Measures of Network Embedding 

 

In the dialog, we’re using the student data introduced in Chapter 2.  We’ve specified that 

the input file is the acquaintanceship network at the time of the course final exam (wave 4).  

Since we will want to save the output and append it to the file of individual attributes, we’ve 

used the default file name for the output.  We could specify the data as directed, or let the 

program detect that it is (auto-detect) given the fact that the acquaintanceship matrix is 

asymmetric across its diagonal.  UCINET can calculate normalized scores, which may be 

useful for comparison across different networks.  Since we are only concerned with the one 

class, we’ll keep the original metrics (note “Raw scores” is selected).  The last panel (lower 

right), lets us choose various measures of distance and centrality, which we will discuss with 

the output that is shown in Figures 6.2.1 and 6.2.2 (the output was too wide to fit into a 

single figure so it was split into two parts). 
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Figure 6.2.1. UCINET Output of Wave 4 Centralization Measures (Part 1) 

 

 

Figure 6.2.2. UCINET Output of Wave 4 Centralization Measures (Part 2) 
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The number of ties actors have to others in the network, and how close they are to others, 

could affect whether they adopt an attitude or behavior.  From the output in Figure 6.2.1, 

we see that AJ has fewer connections than actor BA, both from others naming them as 

acquaintances (in degree; column 1) and others that they’ve named (out degree; column 2).  

UCINET also provides measures of out degree and in degree of an actor’s direct 

acquaintances.  In column 3, Out2local tells us the total number of acquaintances named by 

each acquaintance named by ego.  For example, because the out degree of AD is equal to 

four, we know AD named four others as acquaintances (whether they named AD or not).  

The total number of others named by those four is captured by Out2local and is equal to 

48.  Similarly, In2local (column 4) tells us the number of acquaintances that named the 

acquaintances of ego.  So because 17 students named AD as an acquaintance (in degree = 

17), we know those 17 were named as acquaintances 259 times from In2local.   

The local two-degree measures just discussed seem a little odd.  We know there are only 75 

students total in the data set, yet the 17 in degree acquaintances of AD were named 259 

times?  This is due to the potential for repetition in naming others (e.g. multiple students 

might name all 17 students that name AD, generating a large value of In2local).  If instead 

we are interested in the unique number of students that are separated from ego by two 

steps (“friends of my friends”), we can look at Out2step (column 7 in Fig. 6.2.1) and In2step 

(column 8 in Fig. 6.2.2).  For example, though the 17 students that name AD are named 259 

times, there are only 69 unique students that name them (In2step).  So AD is connected to 

69 of the 75 students in the class by only two steps of separation, at least for inward ties 

(pointing toward AD).  AD is only connected to 35 students via two steps of outward ties 

(Out2step). 

The average distance from ego to all others in the network that are reachable (OutARD, 

column 9 in Fig. 6.2.2) and the average distance to ego from all others in the network that 

can reach ego (InARD, column 10 in Fig. 6.2.2) are provided.  Also, included are Outclose 

(column 11 in Fig. 6.2.2) and InClose (column 12 in Fig. 6.2.2).  OutClose tells us the out-

closeness which can be thought of as the degree to which ego can reach all other nodes in 
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the network via short path lengths.  In-closeness, then, is the degree to which ego can be 

reached by all other nodes via short path lengths.  All of these measures are possible ways 

of thinking about the density or closeness of each actor to the broader network.  Social 

influence models often hypothesize that actors who are more connected, in one way or 

another, are more likely to have attitudes and behaviors that are closer to the mean or 

mode. 

The output also shows measures of ego’s centrality in the network.  The Bonacich power 

measures (as well as a similar measure that’s not shown, the eigenvector centrality) indicate 

whether ego is connected to other well-connected actors.  If ego has high in-centrality (e.g. 

column 6 in Fig. 6.2.1), i.e. they are being influenced by other influential actors, they may be 

“constrained.”  If ego has high out-centrality (column 5 in Fig. 6.2.1), they are able to exert 

influence on other influential actors.  Actors who have high “betweenness” centrality 

(columns 13 and 14 in Fig 6.2.2) are acting as transmitters or brokers of ties between other 

pairs of actors.  Being a “broker” may be a source of power, and hence make an actor less 

constrained and more influential. 

For many social processes, the way that an actor is embedded in their local neighborhood 

of the social network can be more important than their overall centrality or distance from 

others.  UCINET has a number of tools for describing ego-networks (the actors that are 

connected to ego at a short distance, and the connections among them).  Metrics on each 

actor’s ego-network can provide some interesting insights into variation in ego’s attitudes 

and behaviors. 

Network>Ego Networks>Egonet Basic Measures in UCINET allows varying definitions of 

neighborhoods, and calculates a number of measures describing the topology of each 

node’s local network.  Figure 6.3 shows a dialog for the acquaintanceship data at the time 

of the final exam. 
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Figure 6.3. UCINET Dialog of Basic Egonet Metrics for Wave 4 Acquaintanceship  

 

In the dialog we’ve identified the acquaintanceship matrix at wave 4 (the time of the final 

exam).  Since the network is directed, we can choose to define it by relationships directed at 

ego (the in-neighborhood), relationships from ego to alters (out-neighborhood), or to 

include both.  We’ve chosen to define ego’s neighborhood as any actors that claim ego as 

an acquaintance (and any ties among these alters).  The in-neighborhood is a reasonable 

choice because we are focusing on how ego is influenced by alters (rather than how 

influential ego is with alters).  The output dataset was named and saved to be used later, so 

that it can be appended to the attributes dataset to act as a set of independent variables 

for predicting ego’s attributes.  Figure 6.4 shows the output for the first 10 of 75 egos. 
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Figure 6.4. UCINET Output of Basic Egonet Metrics for Wave 4 Acquaintanceship  

 

 

Most of the common metrics for ego-networks (egonets, for short) get at the same ideas as 

the global measures we saw above.  Student AJ, for example, has 7 students who name 

him/her as an acquaintance (column 1).  Among those 7 others (not including AJ), there are 

42 possible ties (column 3), of which 26 are actually present (column 2).  The density of 

ego’s local neighborhood, then, is 61.9% (column 4).   

The density of an egonet, leaving ego out of it, is also called the “clustering coefficient,” and 

it is often useful as a measure of the “open-ness” of ego’s network.  If ego is known by 

others who are connected to one another, we may observe “clique” like pressures for 

conformity and resistance to outside influences.  If ego’s network has low clustering, or is an 

“open” network, ego may be exposed to more diverse and competing pressures.  The 

“granularity” of ego’s local network, or the extent to which it is composed of groups of 

connected others, is also commonly indexed by the ratio of the number of weak 

components (groups of alters, all of whom are connected to one another; column 7).  How 
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close ego’s network is to the network as a whole can be seen by looking at the percentage 

of all nodes that are within two steps of ego (the first step is in ego’s local network, the 

second step reaches beyond; column 9).  The “reach efficiency” measure (column 11) also 

addresses the idea of the open-ness of ego’s network.  The efficiency measure tells us the 

amount of contact ego gets with the larger network per member of ego’s personal network.  

Low ratios indicate more network closure. 

The last four measures deal with ego’s influence or power in their local neighborhood.  It is 

assumed for egonets that ego has more influence and greater autonomy to the extent that 

he/she controls the access of other members of the network to one another.  Brokerage 

(column 12) and betweenness (column 14) are alternative ways of indexing the extent to 

which alters in ego’s neighborhood are dependent on ego.  Some additional measures of 

ego’s autonomy and influence derived from Ronald Burt’s work (1992) are available under 

Network>Ego Networks> Structural Holes.  Some measures of the role that ego plays in 

connecting groups of actors with different attributes (e.g. acting as a “gate keeper” in 

relations between White and Asian students), developed by Gould and Fernandez (1989), are 

available under Network> Ego Network> G+F Brokerage roles. 

The measures of ego’s local network that we’ve looked at so far refer to its structure and 

ego’s embedding in it.  It may also be very important to understand the composition of 

ego’s network (e.g. is ego tied to mostly women, or mostly to men? And, to what extent is 

ego tied to alters who are similar or dissimilar to ego, i.e. homophily?).  UCINET has some 

helpful tools for constructing measures of network composition and homophily of the local 

context of each actor.  These indexes can also be saved and appended to the attributes 

dataset. 

Figure 6.5 shows the dialog for Network>Ego Network>Egonet Composition>Categorical 

Alter Attributes which can be used to build measures of the attributes of the others in ego’s 

one-step neighborhood.  There are two versions of this tool.  One works with categorical 

alter attributes (like the gender or racial compositions of those tied to ego); the other with 
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continuous alter attributes (like the average attendance rates or test scores of those tied to 

ego). 

Figure 6.5. UCINET Dialog for Generating Egonet Composition Measures (Categorical Alter 

Attributes) 

 

In this dialog, we focus on the acquaintanceship network at the time of the final 

examination and identify the attributes dataset and column that contains ego’s ethnic 

identity.  If we are interested in the social composition of actors who are influencing (rather 

than being influenced by) each student, we can select “incoming ties only.”  Figure 6.6 

shows a portion of the results which are saved as a file that can be appended to the 

attribute file.  We will save the output measures to be used later. 
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Figure 6.6. UCINET Output of Egonet Composition Measures (Categorical Alter Attributes) 

 

In the above output, ethnicity = 1 refers to Whites, ethnicity = 2 refers to Hispanics, 

ethnicity = 3 refers to Asians, and ethnicity = 4 refers to African Americans. We see from the 

frequency table that the network as a whole is composed of 17 Whites, 20 Hispanics, 32 

Asians, and 6 African Americans.  From the first column, we can see that actor AJ identifies 

as Hispanic.  AJ is identified as an acquaintance by one White student, four Hispanic 

students, two Asian students, and zero African American students (columns 2 through 5).   

The next four columns display the proportion of total incoming ties from students of each 

ethnic identity.  One summary measure of heterogeneity (column 10 in the output) was 

developed by Peter Blau, and is described in UCINET as “1 minus the sum of the squares of 

the proportions of each value of the categorical variable in ego's network.  For example, a 

person connected to equal numbers of men and women will have a Heterogeneity measure 

of 0.5, calculated as 1 -  ( (1/2)^2 + (1/2)^2) ).”  This value can be thought of as a non-

normalized index of qualitative variation (the interpretation varies by the number of 
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categories of the discrete variable being measured).  The last column provides the index of 

qualitative variation (column 11).  Both measures suggest moderate heterogeneity in the 

ethnic identity of students who influence AJ. 

Figure 6.7 shows the dialog for indexing the composition of ego’s neighborhood on a 

continuous attribute.  In this case, the rate of participation in the term paper project as 

assessed by members of the student’s work group. 

Figure 6.7. UCINET Dialog for Generating Egonet Composition Measures (Continuous Alter 

Attributes) 

 

As usual, we identify the network from which we want to extract the egonets 

(acquaintanceship at wave 4), and the file and column containing the student’s attribute of 

participation grade in the final project.  The output might be saved for appending to the 

attribute file.  We’ve selected “Incoming ties only” to focus on the attributes of alters who 

are influencing ego.  If the network was a valued network (e.g. “on a scale of 1 to 10, how 

well do you know X?”), we could weight the attributes of the alters proportional to tie 

strength (our network, however, is just a binary zero-one).  Since the output will be means 

and standard deviations, alters with extreme scores could skew the results.  Options are 

available to trim means and standard deviations.  The output is shown in figure 6.8. 



 127 Statistical Analysis of Social Networks 

Figure 6.8. UCINET Output of Egonet Composition Measures (Continuous Alter Attributes) 

 

The first two columns appear to bleed into one another.  Keep in mind that this command 

rounds to three decimal places, so the first column for AD reads 91.176 and the second 

column reads 1550.000.  We can see from the output that AJ was identified as an 

acquaintance by seven others (column 6), all of whom were rated as not very active 

participants in the term project (average of 80.6 out of 100 possible; column 1).  Their 

scores were also very diverse ranging from 39 to 100 with a standard deviation of 22.3.  

Actor CD, on the other hand, was being influenced by 10 alters who had a much higher 

average participation rate (95.0), who were also much less diverse in this regard (ranging 

from 84 to 100, with a standard deviation of only 5.3). 

The ego-net composition tools are potentially quite important in the analysis of social 

influence, as they enable us to index the attributes of those who are directly connected to 

ego in the network.  We may be interested in both the central tendency (what kind of alter 

is typical for ego? what is the mean or average score of the alters of ego?), and in diversity 

or variation among the alters. 
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Building on this idea of homogeneity or diversity of the attributes of those influencing alter, 

SNA particularly focuses attention on “homophily” or the extent to which ego is similar to 

alters.  Students who are tied to other students who are very similar to themselves may be 

more subject to stronger constraints but may also have higher levels of social support.  

UCINET, again, provides a fairly convenient tool for indexing the homophily of ego’s 

network with Network>Ego Networks>Egonet Homophily.  A dialog for this tool is shown in 

figure 6.9. 

Figure 6.9. UCINET Dialog for Generating Egonet Homophily Measures 

 

In this dialog, we’ve asked for measures of the similarity of the ethnic composition of ego’s 

network to ego’s own ethnic identity, using the acquaintanceship network at wave 4 to 

identify incoming tie egonets.  As always, the results shown in figure 6.10 can be saved to a 

file, and then appended to ego’s attributes to be used later. 
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Figure 6.10. UCINET Output of Egonet Homophily Measures 

 

Various measures of the similarity of ego’s ethnic identity to that of his/her in-neighbors are 

given.  The percentage of neighbors who have the same ethnic identity as ego (e.g. 57.1% 

for AJ) is the most obvious (column 1).  The numbers of neighbors who have the same 

ethnic identity as ego (column 7) and different ethnic identity as ego (column 8) are 

displayed as well.  The EI index (column 2) is the difference between the numbers of ties to 

actors outside ego’s group less the number of ties to actors inside ego’s group, divided by 

the total number of ties.   Positive values, therefore, show a preponderance of “external” ties 

and negative values show a preponderance of “internal” or homophilous ties.  A variety of 

other measures are provided that may be of interest, depending on the problem. 

Unfortunately, as of this writing, UCINET does not have a tool for computing measures of 

egonet homophily for continuous attributes.  For example, there is no simple tool for 

calculating an index of how similar ego’s score on group participation is to the participation 

scores of those who identify ego as an acquaintance.  If this sort of homophily is important, 

one can recover the average score of ego’s alters on a continuous attribute using 

Network>Ego Networks> Egonet Composition>Continuous Alter Attributes, and calculate 

the difference of ego’s score from the mean of ego’s neighbors. 
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In this rather lengthy section we’ve looked at some ways of indexing how each actor is 

embedded in both the global, and their local (ego) network.  How connected ego is, how 

central they are, whether or not their neighborhood is highly clustered and/or well 

connected to the global network may all be important structural aspects of an actor’s 

location that affect their attitudes and behavior. 

Of course, it is not just being connected that matters.  It may matter to whom one is 

connected.  Indexing the attributes of the others in an actor’s neighborhood (composition), 

and measuring how similar an actor is to his/her neighbors (homophily) may also matter in 

predicting an actor’s attitudes and behavior. 

6.2.4 Independent Variables:  Weights for Network Autoregression and Autocorrelation 

The attributes of those to whom an actor is connected may affect the actor’s attitudes and 

behaviors.  Probably the most critical attributes of ego’s neighbors are the attitudes or 

behaviors that we want to understand.  A key variable in network models of social influence 

then, is the values of the dependent variable for those who are connected to an actor.  If we 

are trying to understand a student’s performance on the final exam, an important predictor 

may be the performance of those who are most influential via the student’s social network. 

An actor’s score on the dependent variable may be influenced by the scores of their 

network neighbors via two different processes:  autoregression and autocorrelated error.  

When the scores on the dependent variable of ego’s neighbors directly cause ego’s score 

we have “autoregression.”  As in social influence or diffusion models, the scores of alters are 

treated as independent variables.  Sometimes ego’s score on the dependent variable may be 

correlated with that of ego’s neighbors because of local disturbances or omitted variables.  

These kinds of error processes are called “autocorrelation.”  Autocorrelation is treated as 

spatially correlated error, similar to time-correlated error in time series analysis. 

Whether the process involved is autoregression or autocorrelation (or both), we need to 

represent the scores of alters on the dependent variable as a predictor or ego’s scores in 

network influence models.  There are a variety of approaches. 
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First, one can simply summarize the scores of alters on the dependent variable directly.  If 

we are only concerned with alters who are adjacent to ego, we can use Network>Ego 

Networks>Egonet Composition>Continuous Alter Attributes or Network>Ego 

Networks>Egonet Composition>Categorical Alter Attributes to create a new variable that is 

the mean score of alters directly tied to ego on the dependent variable, or the proportion of 

ego’s direct-tie alters that have a particular score on the dependent attribute.  Figures 6.11 

and 6.12 calculate the average score of direct-tie alters on the final exam for each ego, 

which we will use as an independent variable to predict ego’s score. 

Figure 6.11. UCINET Dialog Used to Create Alters’ Average Score on the Final Exam 
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Figure 6.12. UCINET Output for Alters’ Average Score on the Final Exam 

 

We see, for example, that AJ’s seven (column 6) in-neighbors had an average score of 71.0 

(column 1) on the final exam, and that CJ’s 13 in-neighbors did worse with an average of 

score of 64.7. It might be worth noting (and possibly including as a predictor variable) the 

variation among the neighbors.  While the neighbors of BS and CC performed similarly on 

the exam, on the average, the performance of BS’s neighbors was much more variable (see 

column 5). 

For many autoregressive and/or autocorrelation processes, we may believe that neighbors 

who are more than one step from ego might have indirect effects on ego.  Usually we 

believe that the influence of alters declines with distance from ego, and most often we think 

that this influence declines rapidly with distance. 

For more complex ideas about the effects of neighbors at-a-distance, it is best to create a 

matrix of distance weights as we did in chapter 5 for calculating the Moran and Geary 

network autocorrelation.  With a little matrix algebra and a distance-weights matrix, one can 

create an independent variable to use directly in modeling.  Or, one can use the weights 
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matrix in software designed for autocorrelated error and autoregression, as we do in an 

example later on in this chapter. 

One common metric for social network “nearness” (or distance weighting) is the reciprocal 

of the geodesic distance between nodes.  See Figure 5.11 (last chapter) to see these dyadic 

data nearness weights. 

We now have all the pieces in place.  Our dependent variable is a measure of some 

attribute of ego.  Our independent variables include other attributes of ego, specifically, 

measures of the ways in which ego is embedded in the network globally and locally.  We 

also use measures of the composition of ego’s neighborhood and ego’s homophily with the 

alters in ego’s direct-tie neighborhood as independent variables.  Finally, we include 

measures of direct-tie alter’s scores on the dependent variable to measure any effects of 

autoregression and/or autocorrelation. 

This sounds complicated.  However, once the data are assembled, the analysis is an exercise 

in linear modeling, with the use of permutation to test hypotheses.  Let’s look at a variety of 

approaches.

 

6.3 Generalized Linear Models for Network Influence 

As we saw above, we can create measures for each actor that describe variation in their 

position in the network and the influences operating on them through their network 

connections.  For example, an actor’s betweenness centrality might be used to get at the 

idea that actors who are more central in the global network are more likely to have more 

favorable outcomes because they have more dependent alters that they can draw on for 

resources.  Or, actors who are embedded in local neighborhoods that contain many 

individuals who are similar to themselves and/or have high closure may perform more 

poorly because of the lack of diversity in the social capital that they have available. 

Having created variables for each actor that measure not only their attributes, but also their 

structural location in the network and the influences operating on them, we can apply 
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regular generalized linear modeling techniques to explain variation in individual attributes.  

This approach to understanding network influence on individual attributes has the 

advantage of being able to deal with actor outcomes that have a variety of distributional 

forms and a variety of link functions to the predictors. 

Analyzing network influence this way treats each actor in the network as a case, but the 

cases are obviously not independent of one another.  Consequently, permutation or other 

re-sampling methods should be used to assess the reliability of parameters.  Let’s look at 

some examples. 

Suppose that we are trying to predict a student’s performance on the final examination.  We 

might treat the outcome (the individual’s performance on the final exam) in a variety of 

ways.  Since a score of 70 or more was considered to be “passing,” we might dichotomize 

the outcome.  If we took this approach, then a GLM with a binary logit or probit form might 

be useful.  We might choose to simply rank students from best to worst exam performance.  

If that was our approach, then an ordered logit or probit might be useful.  Or we might use 

all of the information available and analyze the interval-ratio total points earned on the 

exam, assuming a Gaussian, or perhaps log-normal or gamma distribution. 

Let’s look first at some results for simple binary logistic regression predictions of the odds 

that an individual achieved a score of 70 or higher on the final exam.  In Table 6.1, several 

models are presented that begin with individual actor attributes, then add predictors 

describing global and local network position effects, and finally add effects of network 

influence.  Figure 6.14 shows the Stata syntax and output used to generate model 2.  Figure 

6.15 shows the Stata syntax and output used to test the significance of the coefficients in 

model 2 by Monte Carlo permutation.  To run these analyses, we created a standard 

attribute data set (actors by attributes), and used Stata’s logistic regression command, 

followed by the post-estimation “estat” command to get information criteria measures for 

the models.  Stata’s permute command was used to generate tests of significance for the 

model coefficients (with 5000 replications).  Asian was used as the reference category for 

ethnic identity because it was the modal category.  Odds ratios are shown in Table 6.1. 
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Table 6.1. Logistic Regression Models Predicting Passing the Final Exam 
Effect/Model     1 2 3  4 5 
Academic Effects      

Midterm 1.06* 1.06* 1.06* 1.11** 1.12** 
Attendance 1.00 1.01 1.00 0.95† 0.93* 

Demographic Effects      
White  4.17* 2.96 135.79** 2206.56** 
Hispanic  2.25 1.58 4.04 10.43* 
African American  6.06† 4.44 668.83** 22812.40** 
Woman  0.34† 0.35 0.07** 0.001** 

Network Position Effects      
Degree   1.00 0.34 0.50 
Betweenness   1.00 0.98 0.97† 
Closure   0.95 1.08 0.97 
Brokerage   1.02 1.10 1.08 

Egonet Influence Effects      
Ethnic diversity    1.16** 1.28** 
% Women    0.95 0.94 
Gender diversity    1.10 1.19* 
% passed    0.78** 0.73** 
Avg. Attendance    0.71** 0.57** 

Homophily Effects      
Ethnicity homophily     1.02 
Gender homophily     1.11** 

Pseudo R2 0.07 0.16 0.19 0.54 0.62 
AIC 102 101 106 79 74 
BIC 109 118 131 116 116 
†p < 0.10; *p < 0.05; **p < 0.01, two tail, by permutation trials 
 

 

 

 

 

 

 

 

 

 



 136 Chapter 6.  Network Influences on Attributes 

Figure 6.13. Stata Syntax and Output for Logistic Regression of Passing Final Exam (Model 2) 
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Figure 6.14. Stata Syntax and Output for Permutation Tests of Logistic Regression 

Parameters (Model 2) 

 

In the first model, we predict passing the final exam based on whether the individual passed 

the mid-term, and their attendance at lecture between the mid-term and the final.  The 

coefficients, which indicate how unit changes in the predictor multiply the odds of passing 

the exam, demonstrate that passing the mid-term exam has positive effects on passing the 

final exam.  From the permutation trials, we find that effects of the size observed here occur 

in less than 5% of randomly permuted networks.   

The second model adds the individual attributes of ethnicity and gender.  Both ethnic 

identity and gender appear to affect the likelihood of passing the final exam for this social 

networks class.   
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The third model includes measures about the embedding of ego in the global and their 

local network (degree, centrality, ego-network closure, and brokerage within the ego-net).  

These measures were generated using the procedures shown in figures 6.1 through 6.4 

above.  The degree variable is the in degree of each actor, which can be found using either 

the “Indeg” variable from the “wave4_2011-cent” data set created in figures 6.1 and 6.2, or 

the “size” variable from the “wave4_2011-EgoNet” data set created in figures 6.3 and 6.4.  

These are identical measures.  To measure centrality, we chose to use the global 

betweenness centrality variable (“Between”) from the “wave_2011-cent” data set.  To 

measure ego-network closure, we reverse coded the reach efficiency (“ReachE”) variable 

from the “wave4_2011-EgoNet” data set because high values of ReachE indicate low levels 

of closure (this can be reverse coded by multiplying by negative one or subtracting from the 

max value).  Finally, we used the brokerage variable (“Broker”) from the “wave4_2011-

EgoNet” data set.  None of these variables appear to be strong predictors of passing the 

final. 

The fourth model adds social influence variables that describe the composition of each 

student’s ego network.  Specifically, we were interested in ego’s in-neighborhood, or the 

direct ties that claim to know ego and therefore may influence ego’s behaviors and 

attitudes.  The ethnic diversity variable used was from the “wave4_2011-EgoComposition-

Ethnicity” data set created via the procedures shown in figures 6.5 and 6.6.  We used Blau’s 

measure of heterogeneity (“Hetero”) multiplied by 100.  The same procedure was run to 

generate variables describing the gender composition of the ego-networks.  We multiplied 

the output variable called “p2,” which is the proportion of category two for the gender 

variable (woman), by 100 to generate a “percent woman” variable.  This is the percentage of 

ego’s direct ties that are women.  We also used Blau’s heterogeneity measure (“Hetero”) 

multiplied by 100 to create a gender diversity variable.  In Chapter 5, we created a 

dichotomous variable that measured whether or not each student passed the final exam 

(where we’ve defined passing as achieving 70% or greater).  Following the same procedure 

used to create the “percent woman” variable, we generated a “percent passed” variable 

which tells us the percent of ego’s direct ties that passed the final exam.  Finally, using the 
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same procedure outlined in figures 6.7 and 6.8, we generated a variable that examines the 

average attendance score (the UCINET output variable name is “Avg”) for the final third of 

the term (the time period most relevant to the final exam) for ego’s direct ties.  

Interestingly, diversity in the ethnic identities of students’ direct ties significantly improves 

their odds of passing, however, students who have friends with higher mid-term scores and 

better attendance are LESS likely to pass the final exam!   

The final model tests the effects of homophily.  That is, what are the effects on individuals 

of being in a personal network that is mostly of the same gender or same ethnicity as 

themselves?  The creation of a measure of ethnicity homophily was demonstrated in Figures 

6.9 and 6.10.  This variable (“PctHomophilous”) saved in the data set “wave4_2011-

EgoHomoMeas-Ethnicity” was used along with a gender homophily variable created in the 

same manner (both were multiplied by 100 to convert to percentages).  We note a tendency 

(net of all the other factors) for students who have friends that are mostly the same gender 

as themselves to have improved chances of passing the final exam. 

If we had measured the outcome as the interval-ratio variable of score on the final exam, we 

could use a different version of the GLM.  Table 6.2 shows the results of a parallel analysis 

using a Gaussian distribution and identity link function (i.e. classical OLS linear regression), 

with permuted significance tests. 
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Table 6.2. OLS Linear Regression Models Predicting Final Exam Score 
Effect/Model     1 2   3  4 5 
Academic Effects      

Midterm 0.40** 0.32* 0.33* 0.32* 0.30* 
Attendance 0.04 0.07 0.04 0.05 0.06 

Demographic Effects      
White  9.13* 7.71† 12.42** 10.10† 
Hispanic  3.99 2.25 5.19 4.23 
African American  -2.30 -4.10 6.21 0.77 
Woman  -6.24† -5.70 -6.26† -8.07 

Network Position Effects      
Degree   0.12 2.00 2.09 
Betweenness   -0.02 -0.08 -0.10 
Closure   -0.15 -0.32 -0.28 
Brokerage   0.10 -0.03 -0.02 

Egonet Influence Effects      
Ethnic diversity    0.05 0.04 
% Women    -0.12 -0.16 
Gender diversity    -0.00 -0.10 
% passed    -0.53** -0.51** 
Avg. Attendance    0.51 0.54 

Homophily Effects      
Ethnicity homophily     -0.15 
Gender homophily     0.13 

R2 0.14 0.29 0.32 0.53 0.58 
AIC 595 589 593 569 565 
BIC 602 605 619 605 607 
†p < 0.10; *p < 0.05; **p < 0.01, two tail, by permutation trials 
 

The analyses here are for illustration, and shouldn’t be taken very seriously (see the 

impossibly large odds ratios in the final column of Table 6.1).  We are over-fitting the data 

with a model that is too complex.  There are some substantial collinearities among the 

predictors.  Most important, of course, there is no well-developed theory underlying the 

inclusion of terms.  Do note, however, that the addition of measures of how ego is 

structurally embedded (models 3 and beyond), and social influence (model 4 and 5) do add 

considerably to our ability to predict the outcome, compared to a model based on 

individual attributes alone.  However, from the BIC, we can see that this extra explanatory 

power comes at a cost. 
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Our approach to the effects of structural embedding and social influence are rather ad-hoc.  

In the next section, we will examine one more theoretically grounded approach to the study 

of social influence and diffusion processes based explicitly in exponential random graph 

theory (which we will discuss at some length in upcoming chapters). 

 

6.4 Autologistic Actor Attribute Models 

The “autologistic actor attribute model” (AAAL) is a distinctive approach to examining 

processes of diffusion and influence that fits in the general “exponential random graphs” 

(ERG) framework that we’ll examine more closely in the next few chapters.  An excellent 

recent presentation of the general approach to the AAAL is contained in Lusher, et. al 

(2013).  A formal presentation of the model itself is given in Draganova and Robins (2013), 

and an illustration of its use to study network effects on employment status is provided in 

Draganova and Pattison (2013).  The first of these works provides a very nice literature 

review that situates the AAAL within the ERG literature, and discusses precursors and 

competing approaches.  Software for estimating AAAL (called iPNet) is available from 

http://www.melnet.org.au/pnet/, which is the home of the research group that has been a 

leading innovator in this field for many years.  

At this writing, the AAAL model software supports the analysis of binary actor attributes (i.e. 

there are no versions for ordinal, multinomial, or interval-ratio attributes), and embedding in 

a symmetric binary network.  The dependent variable is the presence or absence of the 

attribute for each ego, and ego’s attributes may be used to predict the log-odds of the 

presence of the attribute, just as we might if we were treating each ego as an independent 

observation. 

The AAAL model, though, allows us to estimate a number of different kinds of social 

influence effects based on characteristics of ego’s one-step ego network.  There are three 

general classes of social influence effects of this type:  “network position” effects; “network-

attribute” effects; and “covariate” effects. 

http://www.melnet.org.au/pnet/
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“Network position effects” characterize some important aspects of the structure of each 

ego’s neighborhood, independent of attributes of the neighbors.  These network position 

effects represent hypotheses about how the embedding of an ego in his/her local network 

may affect the probability that they have the attribute.  Figure 6.15 (adapted from 

Daraganova and Robins 2013, table 9.1) graphically illustrates the types of network position 

effects that can be estimated with the AAAL.  Note that the circles representing the alters 

directly or indirectly tied to ego (the shaded circle) are left unshaded which indicates that 

the presence or absence of the alters’ attribute is not important for these types of effects. 

Figure 6.15. AAAL Network Position Effects 

 

The first five effects form a hierarchy that models the majority of the variation in the 

degree-distribution of the graph.  That is, these effects examine the hypothesis that egos 

that have fewer (or more) alters are less (or more) likely to exhibit the trait.  Suppose that 

we were interested in predicting whether our students passed the final exam.  We might 

think that students who had more acquaintances had more information, study partners, and 
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social support, and would be more likely to pass the exam (regardless of their own 

attributes, or the attributes of their partners).  The “actor activity” effect codes whether each 

ego has one (or more) alters.  The “actor 2-star” effect codes whether an ego has two (or 

more) alters (controlling for whether they have any partners).  The “actor 3-star” and “k-star” 

further differentiate actors who have still more alters from those who have none or fewer.  

Most degree distributions of actors are steeply exponential, so knowing whether actors have 

any alters or not, or knowing if they have more than one or two partners usually accounts 

for most of the variation in degree distributions. 

The next three network position effects in figure 6.15 capture the idea that some actors are 

connected to others who are themselves well connected, while other egos may have equal 

numbers of partners, but those partners are less well connected.  This is the notion of 

eigenvector or power/influence centrality.  We might suppose, all else equal, that actors who 

are connected to well-connected others have easy access to large quantities of support, 

information, and influence.  In our example, we might suppose that students who are well 

embedded in the “in-crowd” are in an advantaged position in preparing for the final exam. 

The last network position effect in figure 6.15 is the “actor triangle.”  Given that an ego has 

at least two alters, this effect asks:  are these alters connected to one another?  This gets at 

the idea of “clustering,” or “closure,” or lack of “structural holes” in ego networks.  Actors 

who are tied to other actors who are also tied together (net of other structural effects) may 

have less efficient networks.  Speculatively, we might suppose that students with 

neighborhoods characterized by “cliques” or closed structures may do more poorly on the 

examination because they have access to less unique information and perspective per social 

tie. 

The network position effects of the AAAL are intended to capture the most important 

structural aspects of the ego-neighborhoods of each node (degree distribution, centrality, 

closure).  They lead us to think about why some actors might be more likely to display an 

attribute based solely on how they are connected, regardless of the attributes of those to 

whom they are connected. 
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The next class of effects in the AAAL model, “network-attribute” effects, model specific 

forms of local autoregression.  Figure 6.16 (again, adapted from Daraganova and Robins 

2013) illustrates the effects available in iPNet.  Notice now that certain alters directly or 

indirectly tied to ego are shaded, indicating that the presence or absence of those alters’ 

attribute is important for these types of effects. 

Figure 6.16. AAAL Network-attribute Effects 

 

The most obvious, and often most important autoregressive effect is the “partner attribute” 

effect.  It hypothesizes that the presence or absence of the dependent attribute for alter 

affects the probability that ego also has the attribute.  The AAAL model also includes 

additional possible effects of the prevalence and location of the attribute in ego’s 

neighborhood on the likelihood that ego displays the attribute. 

The “indirect partner attribute” hypothesizes that if ego’s direct-tie alter has an alter that has 

the attribute (regardless of whether ego’s direct-tie alter does), this indirect influence may 

affect ego’s outcome.  The “partner attribute activity” effect hypothesizes that ego’s direct-

tie alter may be more likely to lead ego to adopt the attribute if the direct-tie alter has 

alters (we are more influenced by others who are popular).  This partner attribute activity 

effect may be even stronger to the extent that the direct-tie alter’s alters also display the 

attribute (“partner-partner attribute”).  Again, as with network position effects, note that the 



 145 Statistical Analysis of Social Networks 

network attribute effects are hierarchical – one must have effects from partners in order to 

also possibly have effects of partner’s partners.  These effects suggest, for example, that the 

performance of the student’s friend’s friends on the exam may influence our focal student’s 

chances. 

The last two effects in figure 6.16 combine the closure of ego’s neighborhood, and the 

prevalence of the attribute in that neighborhood.  The “partner-attribute triangle” suggests 

that being in a closed neighborhood where anyone else has adopted the attribute may 

affect the likelihood of adopting.  The “partner-partner attribute triangle” suggests that if 

ego is embedded in a clique where everyone else has the attribute, they are also likely to 

display it.  If a student is in a clique where anyone passes the exam, or where everyone else 

passes the exam, they may themselves be more likely to pass the exam. 

Finally, the AAAL model provides ways of modeling the effects of other attributes on the 

likelihood that ego displays a trait (“covariate effects”).  Obviously, we might suppose that 

ego’s own attributes affect the likelihood that they display an attribute.  For example, 

students who have done well on previous exams may be more likely to pass the final. 

It also might be true that students who are tied to others with certain attributes may have 

different outcomes, regardless of their own attributes.  In AAAL, these are called “partner-

covariate” effects.  For example, a student who is connected to others who did well on 

previous exams might be more likely to do well on the final. 

Whether ego and alter are homophilous on other attributes may also by hypothesized to 

affect ego’s outcomes.  In AAAL, such homophily effects are termed “same-partner-

covariate” effects.  If a man has a bias toward other men in his acquaintanceship network, 

he may be more likely to succeed (e.g. do well on a final examination) because of the sense 

of security and social support and trust that may be more common in homophilous ego-

networks. 

Taken together, the AAAL model provides a powerful tool-kit for examining social influence 

processes.  It is a particularly interesting approach because it identifies and suggests 



 146 Chapter 6.  Network Influences on Attributes 

hypotheses about effects on outcomes of the purely structural aspects of how actors are 

embedded in networks.  It also includes a rich approach to understanding autoregressive 

effects, and the effects of other attributes of both ego and alter. 

The iPNet software is relatively easy to use.  It is available free for download, and is easy to 

install.   

***iPNET example using student data coming soon*** 

 

6.5 Autoregressive and Error Correlation Regression Models 

So far, we’ve considered some ways to estimate the effects that the attributes of others 

have on an actor’s own attributes.  In this section, we’ll look at ways in which we can control 

for special kinds of network influence effects that may act as nuisances in our models 

predicting attributes: network autoregressive and spatial error processes. 

Network autoregression exists when ego’s score on an outcome attribute is determined (or 

at least predicted) by alter’s score on the same attribute.  For example, we might 

hypothesize that a student’s score on the final exam is caused, or predicted, by his/her 

neighbor’s (in the ego-net) scores on the final exam.  This kind of effect can be included in 

GLM (see section 6.3 above) and AAAL models.  If ego’s neighbors do, in fact, exert social 

influence on ego, then it seems reasonable that ego may have outcomes that are more 

similar to his/her alters than to random others in the network.  In GLM and AAAL models, 

we are trying to directly model the attributes of the alters that may affect ego’s outcome.  If 

evidence of such effects exist, then there is autoregression in the network. 

Network autoregressive models seek to control for these types of network influences, with 

the main goal of correctly estimating the effects of ego’s own attributes on ego’s outcomes.  

Unlike the GLM and AAAL approaches, network autoregressive models don’t try to directly 

examine the network influence processes, but simply remove these potentially confounding 

effects.  Network autoregressive models provide a convenient way of controlling for network 
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autoregressive influences of actors at greater network distances.  If our interest is primarily 

in how ego’s attributes are associated with ego’s outcomes, we may well wish to simply 

control for, rather than directly model the effects of the alters’ outcome scores on ego’s 

outcome scores. 

Network autocorrelated error exists when there are unmeasured local variables (errors, 

disturbances) that may affect the scores of both ego and ego’s alters on an outcome 

variable.  Suppose that one student, while trying to prepare for the final examination, had a 

family crisis, and called on his/her friends in the class for support.  We might suppose that 

ego’s score on the final exam would be lower than we would have expected on the basis of 

measured variables because of the “local disturbance” of having his/her study interrupted.  

But, we might expect that ego’s friend’s scores will also be negatively affected as they are 

deflected from preparing for the exam by supporting ego.  In this case, both ego and 

his/her connected alters end up studying less for the final exam than we would have 

expected on the basis of their own attributes, resulting in a correlation of the error terms for 

ego, and the error terms for the alters. 

Autoregressive and autocorrelated error models originate from geo-spatial analyses.  In 

geo-spatial analysis, scores on some outcome (say, crime rates) are likely to be similar in 

places that are geographically close to one another.  There are several processes that 

produce these spatial correlations.  Because of exogenous processes (say the operation of 

the social class system of society), the attributes of actors who are spatially close are likely 

to be similar, producing similar outcomes (without any influence processes at all).  The 

scores of spatially adjacent actors may also be similar because they are influencing one 

another.  Criminals who practice their craft in one neighborhood are likely to also seek 

targets in adjacent spaces.  But, there may be additional local disturbances that produce 

more similarity in crime rates in adjacent areas than we would otherwise expect.  Perhaps 

we failed to measure and control for the level of policing, which is likely to be similar in 

adjacent neighborhoods.  Having ignored this important variable will produce similar errors 

of prediction in adjacent neighborhoods. 
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To solve this problem, we simply apply the social network distance between the 

observations, and use the same approaches as geographical analysis, but with network 

distance, rather than spatial distance. 

The network autoregressive process is also known as the “spatial lag model”.  That is, the 

score on the outcome attribute of ego depends on the outcome attribute of ego’s alters, in 

addition to ego’s own attributes. 

The network autocorrelated error model is also known as a model with “autoregressive 

disturbances”.  In this model, the residuals or prediction errors of ego are correlated with 

the residuals or prediction errors of the alters. 

It is possible, of course, to suppose that both lag and correlated error processes are 

operating. 

To estimate models that correct for network auto regressive and/or autoregressive 

disturbances, the spreg package (Drukker, et al.) for Stata is rather easy to use.  Pisani (2012) 

describes spreg as follows: 

spreg estimates the parameters of a cross-sectional spatial-autoregressive model 
with spatial-autoregressive disturbances which is known as  a SARAR model.   A 
SARAR model includes a weighted average of the dependent variable, known as 
a spatial lag, as a right-hand-side variable and it allows the disturbance term to 
depend on a weighted average of the disturbances corresponding to other units.  
The weights may differ for each observation and are frequently inversely related 
to the distance from the current observation.  These weights must be stored in a 
spatial-weighting matrix created by spmat.  spreg estimates the parameters by 
either maximum likelihood (ML) or by generalized spatial two-stage least 
squares (GS2SLS). 

Detailed documentation of the Stata packages needed for these types of models (also 

known as Cliff-Ord models) is available from Drukker, Peng, Prucha, and Raciborski (2013) 

and Drukker, Prucha, and Raciborski (2013).  The packages are used to create spatial 

weighting matrices (spmat) and perform Cliff-Ord regressions (spreg). 
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Let’s again consider the problem of predicting our student’s scores on the final examination.  

We’ve already created the necessary input to do the analysis.  In the section on GLM models 

(above), we created an attribute data set for our 75 students that includes individual 

attributes, measures of the location of each student in the global network (degree and 

betweenness centrality) and local neighborhood (closure and brokerage), and social 

influence (attributes of ego’s neighbors).  Previously (in Chapter 5) we created a network 

distance weights matrix in order to test for autocorrelation.  This is a student-by-student 

matrix of the reciprocal of geodesic distances.  Of course, different definitions of distance 

could be used (for some ideas, see Chapter 5), and different distance matrices could be 

used for the autoregressive and error terms (we will use the same for both). 

After locating and installing the sppack package (STATA:  findit sppack), we locate our 

attribute file and distances file in a working directory (note the path and name).  Estimation 

is a two-step process.  First, we use the distance weights file we created last chapter 

(wave4_2011-geo.dta), and convert it to a form that can be used by the spatial regression 

package.  We then load the attribute file (created for section 6.3 above), and perform 

regressions.  Figure 6.17 gives the edited syntax of the STATA .do (i.e. batch) file that we 

used for this example (syntax for models 5 and 6 have been removed for brevity).  Note, 

data files should be saved as .dta files prior to running.  Also, make sure to specify the 

appropriate directory needed to find the data files. 
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Figure 6.17. STATA Syntax Used to Create a Distance Matrix and Perform Several Cliff-Ord 

Regressions 

* Call in inverse geodesic distance weights 
use "C:\SARAR\ wave4_2011-geo.dta", clear 

* Create a spatial-weighting matrix object  
spmat dta distwt var* 

* Save the spatial-weighting matrix object so that it can be called in when using attribute data 
spmat save distwt using distwt.spmat, replace 

* Open the attribute data 
use "C:\SARAR\attributes", clear 

* spreg wants the id to be numeric, so gen a new id that goes from 1-75 
gen idnum = _n 

***** 
* You would use the following line of syntax to call in the spmat objects 
* that were previously created with spmat. 
* spmat use distwt using distwt.spmat 
***** 

* Run the regressions 
* dlmat uses spatial weights for network autoregression 
* elmat uses spatial weights for autocorrelated errors 

* first model includes only the autoregression based on inverse geodesic distance 
spreg ml e3, id(idnum) dlmat(distwt) 
* get AIC and BIC 
estat ic 

* second model includes only the autocorrelated errors 
spreg ml e3,  id(idnum)  elmat(distwt) 
estat ic 

* third model includes both autoregression and autocorrelated errors 
spreg ml e3,  id(idnum)  dlmat(distwt)  elmat(distwt) 
estat ic 

* fourth model includes only covariates with no autoreg or autocorr 
spreg ml e3 e2 woman part btwcnt egosize pctwoman pctwhite, id(idnum) 
estat ic 

* seventh model includes covariates, autoregession, and autcorelated error 
spreg ml e3 e2 attend3 white hisp afam gender indeg between inv_reacheff broker heteroeth 
pctwoman heterogen attendavg homoeth homogen, id(idnum) dlmat(distwt) elmat(distwt) 
estat ic 

Table 6.3 summarizes the results of seven different models predicting student’s scores on 

the final examination.  The first models (1-3) include only the autoregressive and error 

correlation terms (separately and then together).  The fourth model includes only covariates 

that describe attributes of ego, ego’s position in the network, and ego’s local neighborhood.  

The variables analyzed in section 6.3 were used again here.  The spreg command does not 
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support Stata’s “factor” variables so dummies were generated for ethnicity.  We dropped the 

“percent passing the final” variable because it is, in effect, an autoregressive term.  The final 

three models include the covariates and the autoregressive and autocorrelated error terms.  

The models are for instructional use only, and though they use real classroom data, they 

shouldn’t be taken seriously as testing a well specified theory of student performance. 

Table 6.3. Cliff-Ord Regression Models Predicting Final Exam Score 
Effect/Model 1 2   3 4 5 6 7 
Intercept 59.4** 67.3** 60.6**  34.5† 35.3* 39.0** 39.6** 
Academic Effects        

Midterm    0.31* 0.32** 0.24** 0.24** 
Attendance    0.08 0.09 0.09 0.09 

Demographic Effects        
White    4.94 3.95 7.93* 7.38* 
Hispanic    2.16 2.06 1.61 1.57 
African American    -9.92 -9.39 -11.17* -10.72* 
Woman    -6.48 -7.06† -5.69† -6.03† 

Network Position Effects        
Degree    0.63 2.09 1.75 2.29 
Betweenness    -0.04 -0.01 -0.08 -0.06 
Closure    0.08 -0.04 0.09 0.05 
Brokerage    0.04 -0.07 -0.05 -0.10 

Egonet Influence Effects        
Ethnic diversity    -0.18 -0.15 -0.23 -0.22 
% Women    -0.03 -0.05 -0.00 -0.01 
Gender diversity    -0.33 -0.32† -0.31† -0.31† 
Avg. Attendance    0.38 0.47 0.35 0.38 

Homophily Effects        
Ethnicity homophily    -0.20† -0.19* -0.24* -0.24** 
Gender homophily    0.12 0.14 0.11 0.12 

SARAR Effects        
Autoregression 
(Lambda) 

0.00  0.00  -0.01  -0.00 

Autocorrelated Error 
(Rho) 

 -0.11* -0.11*   -0.20** -0.19** 

Log-likelihood -300 -297 -297 -281 -280 -273 -273 
AIC 606 600 602 596 599 585 587 
BIC 613 607 611 635 643 629 633 
†p < 0.10; *p < 0.05; **p < 0.01, two tail 
 

  

The significance of the coefficients taken with the goodness of fit statistics (deviance, AIC, 

BIC) suggest that including a network autocorrelated error term (Rho) is a useful addition to 
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the covariates.  However, accounting for autoregression (Lambda) does not appear to 

improve the model fit.  Given the fit statistics, it appears that Model 6 might be the “best” 

model of the bunch. 

We usually would anticipate that network autoregressive effects and network autocorrelated 

error effects would be positive quantities.  That is, we would probably expect that being 

surrounded by others who do well on the exam would be associated with doing well 

oneself.  This does not appear to be the case given the models that include Lambda.  

Similarly, we might expect that local disturbances (disturbances affecting an ego network, 

but not the whole network) would produce more similar outcomes among the members of 

the ego-network.  However, the results above tell us just the opposite.  These findings are 

consistent with the models in Tables 6.1 and 6.2 which find that being tied to others that 

pass the exam in one’s egonet causes students to do worse on the exam! 

 

6.6 Summary 

In this chapter we introduced models and techniques for capturing the ways in which 

network processes (e.g. social learning, social influence, diffusion) can influence nodal 

attributes.  Using the student data introduced in Chapter 2, we provided examples 

demonstrating how to generate measures of network position, local influence (via egonets), 

and homophily in UCINET.  We also discussed ways of generating spatial lags for response 

variables and spatial weights that can be used to model processes of autoregression and 

autocorrelation.  We also briefly introduced Autologistic Actor Attribute Models, and finally, 

demonstrated how to control for autoregression effects and autocorrelated errors in Stata. 
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7.1 Network as Dependent Variable 

The distinctive aspect of social network analysis is its focus on the relations between actors, 

rather than the attributes of actors, as the basic building-block of society.  What is probably 

most distinctive about the application of statistical modeling in SNA is its tool kit for 

thinking about patterns of relations (or social structures, or networks) as a dependent 

variable.  In this chapter, we’ll take a look at how SNA approaches explaining and predicting 

networks. 

The formal mathematical definition of a network is very simply a set of nodes and the set of 

edges (if directed) or arcs (if non-directed) among them.  The models we are considering 

have a fixed set of nodes.  So, what distinguishes one network from another is the presence 

or absence of arcs/edges, or their strengths.  To describe a network (or the difference 

between two), we would make lists.  These lists would have the identities of all possible 

pairs of nodes, along with a description of the relation between the nodes.  That is, 

networks can be described, formally, as lists of the “attributes” of all possible dyads. 

Less formally, statistical models for explaining or predicting networks operate by using 

independent variables to predict the state of the relation in each possible dyad among a set 

of actors.  If we had a group of three people (A, B, C), and the symmetric tie of “is a friend 

of,” we would seek to build a model to explain or predict whether A and B were friends, 

whether A and C were friends, and whether B and C were friends.  In this simple case, there 
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are four possible “kinds” of networks or social structures (no ties, one tie, two ties, three 

ties).  The unit of analysis when we are taking the network as our dependent variable is the 

dyad. 

Building theories about why social structures or networks vary then, is building theories 

about how ties are created and ties are dissolved with different probabilities that are 

dependent on explanatory variables.  That is, SNA theories of social structure are 

“generative” and talk about processes that create or break social ties.  The corresponding 

statistical models used to describe networks or test hypotheses about them involve using 

independent variables to predict, for each dyad, the state of the relation between them. 

The unit of observation is the dyadic tie.  The “N” in models predicting networks is the 

number of possible dyads or unique pairs of actors.  For directed networks (i.e. where AB 

does not necessarily imply BA), the number of dyads is K*K-1, where K is the number of 

actors.  For non-directed networks, it is half this number (because AB implies BA). 

The dependent variable (the tie between A and B) can be measured at any level.  To date, 

most statistical models for networks use simple binary measures (the tie AB is either present 

= 1, or absent = 0).  In principle, however, ordinal, counts, multinomial, or interval measures 

of ties could be used. 

The independent variables are used to explain variation across dyads in the 

presence/absence (or form, or strength) of ties.  Following Lusher and Robbins (2013, p. 24), 

it is useful to think of three broad classes of independent variables in models predicting 

networks:  variables that reflect network self-organization processes, variables that measure 

effects of actor attributes, and variables that measure the effects of exogenous context. 

Network self-organization processes suggest that the likelihood of a particular new tie 

forming (or an existing one disappearing) depends upon the current state of the network 

and the location of the tie in that network.  This might sound a bit abstract, and some 

examples of self-organizing processes will help. 
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Consider three actors (A, B, C), with no ties.  If a tie is added, which one will it be? It could 

be AB, BA, AC, CA, BC, or CB (if the ties are directed).  Knowing nothing else about A, B, and 

C, we would probably guess that any one of the six possibilities is equally likely. 

Suppose that the tie AB did form (here, A is the source node, the one directing the tie, and 

B is the destination node).  What happens next?  There are five possibilities (BA, AC, CA, BC, 

CB).  One theory (randomness) would predict that each of these five is equally likely.  But, 

we might have some alternative, substantive theories. 

The theory of “activity” suggests that actors may differ in their capacity/motivation to direct 

ties at others.  If this theory is true, then the tie AC might be more likely than any of the 

others (because an actor who has already formed one tie is more likely to form another; i.e. 

A’s behavior can be categorized as “active” or “outgoing”).  Or, we might suppose that 

“popularity” is operating.  If actors vary in popularity, then actor B, who was selected on the 

first round, would be more likely to be selected by actor C forming CB on the second round.  

Theories of social processes suggest that some actors are more capable/likely to make ties 

than others (they are more active or sociable).  Theories also sometimes suggest that “the 

rich get richer” or that actors who have ties already are more likely to get additional ones. 

In many social situations, there are norms of reciprocity operating.  If we theorize that 

norms of reciprocity are dominant in the three node network, we might then hypothesize 

that in the network with a single tie, AB, the next tie to form would most likely to be BA.   

Alternatively, a theory of brokering might predict that in the three node network with a 

single tie AB, the next tie to emerge would most likely be BC, forming a line in which B is a 

broker between A and C. 

What if two ties exist, what is likely to happen next?  Popularity, activity, and reciprocity 

might all continue to operate.  But, new kinds of structures can now emerge.  If we have AB 

and BC, we might see CA form – creating a “closed circuit.”  If instead, the directed tie AC 

emerged, forming a triad, we’d find a more complex hierarchy. 
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There are a number of different ways of thinking about these sorts of self-organizing 

processes.  Most theorists suggest that activity/popularity (or the shape of the in and out-

degree distributions), reciprocity, closure, and brokerage are often important processes.  

Some analysts think that most of the important variation in network structures can be 

described by looking at configurations of three actors (see our discussion of the triad 

census, below).  Other analysts believe that some additional more complex structures (e.g. 

cliques of 4 or more actors, multiple 2-paths, multiple triangles, etc.) are formed by 

additional social processes. 

In any case, the basic notion of self-organizing network processes is that the existing 

structure of a network affects what happens next.  In other words, the likelihood of a tie 

forming or dissolving depends on how it is embedded in the network structure itself.  The 

processes being described are general ones that operate independently of the attributes of 

the actors. 

Actor attribute processes of generating networks are more familiar.  We might suppose that 

men are less likely than women to form ties due to gender socialization and expectations.  

We might suppose that actors who are supervisors are more likely to form out-ties, and that 

actors who are workers are more likely to form in-ties.  We might also think that ties 

between supervisors or between workers are more likely to be reciprocated, while ties 

between workers and supervisors are less likely to be reciprocated.  That is, we might 

suppose that the likelihood of a given tie forming depends on the attributes of the potential 

sender alone, the potential receiver alone, or the attributes of both (homophily, anti-

homophily, hierarchy, etc.). 

The effects of actors’ attributes bias the basic processes of tie formation.  That is, they 

“interact” with the self-organizing tendencies of networks.  To say that women are likely to 

have more ties than men is to suggest that gender affects or biases processes that create 

density and degree distributions.  To say that two nodes at the same level in a hierarchy 

(workers or supervisors) are more likely to form a reciprocal tie suggests that homophily of 
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rank increases the probability of a tie being reciprocated.  Triads and larger structures may 

be more likely to form among actors who share the same trait (ethnicity, gender, age, etc.). 

Exogenous context, or other dyadic relations among actors may also affect the likelihood of 

forming ties, reciprocating ties, forming closed structures, and the like. 

In our classroom example (see Chapter 2, or the “Classroom Data Codebook” found here, 

for details), we assigned students to work-groups – i.e. we externally imposed a structure of 

affiliation.  We might suppose that being affiliated with the same workgroup would set 

processes in motion that would create a greater density of ties (and perhaps reciprocity and 

closure) among group members.  In an organizational setting, we might suppose that the 

formal “chain-of-command” network would bias the network of informal “friendship” or 

“advice seeking” ties.  Two actors who are closer together in geographical or temporal space 

might be more likely to form ties than actors who are further apart. 

In all of these examples, one dyadic relation is shaping or “training” the pattern of ties in 

another.  The ties of affiliation of students with workgroups would normally be represented 

as a student-by-student matrix, with a “1” indicating that the dyad were in the same work 

group, and a “0” if not.  Similarly, the chain-of-command in an organization can be 

represented as a network of who gives orders to whom.  The geographical or temporal 

distances among actors are represented as a dyadic matrix of distance or closeness. 

To quickly summarize: 

Analyzing networks (or relations or structures) as dependent variables is done by treating 

the state of the relation of each dyad as the dependent variable.  “N” is the number of pairs 

of actors, or dyads. 

Conventional descriptive/predictive modeling approaches are then used to account for 

variation across dyads in the nature of their relation.  By far the most common approach is 

logistic regression predicting the presence or absence of each dyadic relation. 

http://web.york.cuny.edu/%7Ejapkarian/
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While any set of independent variables can be introduced to explain or predict dyadic 

relations, SNA approaches suggest that self-generating structural processes, attributes of the 

actors, and the effects of structural contexts (other networks) are important classes of 

explanatory variables. 

The most important and widely used general approach to predicting or explaining networks 

as outcomes is the “Exponential Random Graph” (ERG) or P-star tradition.  There are many 

local variations, adaptations, extensions, innovations, and advanced applications tuned to 

particular research areas in this general tradition.  In this chapter, we’ll first look at a simple 

tool in UCINET for building a basic ERG model.  Then, in the next chapter, we’ll briefly look 

at the basics of PNet, which allows a much greater range of models (but is more difficult to 

use). 

At present, ERG modeling approaches for non-binary networks have not been developed to 

any useful level.  So, analyzing networks that measure relations as counts, probabilities, 

ranks, types, or strengths are not readily available.  To a limited degree, it is possible to use 

multi-level models in the generalized linear modeling tradition for outcomes of these types.  

We’ll look at some ideas along these lines in the next chapter as well.

 

7.2 The Triad Census 

The generative theories of social networks are largely “bottom-up” theories.  Networks are 

seen as emerging from the agency of actors operating in local neighborhoods, which make 

and break ties.  In looking at larger social structures then, it is often interesting to examine 

the variety of local structures that comprise them.  Suppose that the social network among 

the students in one class has many more ties than another, but that ties in the second class 

are much more likely to be reciprocated if they exist.  These two classes have quite different 

potentials for how they may behave at the macro level.  At the micro level, most students in 

the first classroom are likely to have at least some ties to other students, but students are 

likely to have “open” ego-networks.  In the second classroom, students have fewer alters per 

social tie, and form tighter and more closed local social worlds. 
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The exponential random graph approach to modeling networks predicts the presence or 

absence of a tie (or the tie strength) between each pair of actors as a function of a small 

number of basic network parameters, and how actor (and dyadic) attributes affect these 

parameters.  For example, an ERG model might propose that women have more ties than 

men, but that the ties of men are more likely to be reciprocated. 

Before doing ERG modeling, it is a good idea to take a look at the prevalence of various 

local structures in the network.  One tool for this is the “triad census,” which counts up the 

numbers of triads in a graph that have all logically possible structures. 

For symmetric (bonded, non-directed) graphs, the story of the triad census is pretty simple.  

Focusing on any given triad, it can have one of four possible structures:  no ties, one tie, 

two ties, or all three ties.  Obviously, the more triads there are that have multiple ties, the 

greater the overall density.  But the ratio of the number of triads that have two ties to those 

that have three ties tells us something about the likelihood of transitivity for a given density, 

for example. 

For asymmetric (directed) graphs, the story is more complicated.  The number of ties among 

a given three actor set can vary from 0 to 6.  But, more than that, there is more than one 

way for a directed triad to have, for example, two ties.  In fact, there are 16 possible 

configurations of the ties among three actors.  The triad census for directed data, then, 

reports on the prevalence of 16 different configurations. 

In figure 7.1, we see the results of running UCINET’s Network>Triad Census on all four of 

the waves of the student acquaintanceship data in its asymmetric, or directed form using 

the file “allwaves_2011” (this file was created in Chapter 2). 
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Figure 7.1. UCINET’s Triad Census for Student Acquaintanceship, Asymmetric 

 

The top panel reports the numbers of directed triads across the four waves that had each of 

the 16 possible configurations.  The lower panel provides a key to the configuration names.  

A few observations illustrate how the triad census can provide insights.  The number of 

“empty” triads (003) declined from 64,330 to 38,886 over the term (and, most rapidly during 

the time before the first mid-term, which was between wave 1 and wave 2).  021U and 021D 

(out-star and in-star) configurations changed in step, reflecting the ideas that activity 

processes and processes of preferential attachment are equally likely to occur in this 

network.  A relatively large amount of “strong cliques” (triads with all 6 ties present, or three 

reciprocated relationships) emerged, compared to the numbers of configurations close to 

these “complete subgraphs”. 
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Observations like these should focus ones attention on two things:  the likelihood of 

different mixes of configurations changes as the overall density of the graph increases; and, 

one is led to wonder what kinds of actors (i.e. actors with what attributes) are more or less 

likely to be involved in which kinds of local structures. 

Let’s simplify the picture now, and take a look at the triad census for the four waves where 

the data have been symmetrized (Transform>Symmetrize) using the “maximum” method (if 

either A ->B, or B->A, then A<->B. 

Figure 7.2. UCINET’s Triad Census for Student Acquaintanceship, Symmetric (Maximum 

Method) 

 

We see that the relative numbers of triads with zero, one, two, and three ties change rather 

remarkably as the total density of the graph increases.  Students are increasingly likely to 

become embedded in local structures that are more closed and dense.  In looking at a triad 

census like the one in figure 7.2, it makes sense to ask about the ratio of empty triads to 

triads that are not empty; then to ask about the ratio of triads with two or more ties to 

those with one tie; then to ask about the ratio of triads with all three ties to those with two.  

That is, the triad census reflects an inherent underlying hierarchy.  You cannot have a 

structure with three ties until you have a structure with two, etc. 
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Exponential random graph models predict the presence or absence (or the strength) of ties 

between pairs of actors.  In doing so, they explicitly recognize that the likelihood of a given 

tie is affected by the overall density of the graph, and the overall tendencies in the graph 

for local ties to be reciprocated, to form local closed structures, and for the overall degree 

distribution of the graph to be unequal (preferential attachment).  Going beyond these 

tendencies, ERG models ask what kinds of actors and dyads are more or less likely to have 

ties, within the constraints imposed by the overall structural biases of the graph. 

 

7.3 P1 Testing for Structure 

The earliest stochastic model of graph structure to gain wide-spread use was proposed by 

Holland and Leinhardt in 1981.  The P1 model continues to be a very useful tool for 

describing the structure of a graph.  It also is a good way of understanding some of the 

basic ideas underlying the exponential random graph models that we will examine in the 

next chapter. 

Suppose that we had a set of k nodes, with no ties among them.  Let’s select two of the 

nodes at random, and add a tie.  Now, let’s select two nodes again, including the two nodes 

that are already connected, and add a tie between these two (unless, by chance, we 

happened to select the same two nodes that already had a tie).  We can continue this 

process of random graph construction until all pairs are connected (i.e., the density is 1). 

As the density of our random graph increases, structure emerges.  When we add the first 

tie, we have created a graph with one dyad and k - 2 isolates.  This is the only possible 

emergent structure, so that we know it has a probability of 1.0 in a random graph with only 

one tie.  Another thing to note is that the “degree distribution” has changed as we added a 

tie.  Rather than all nodes having a degree of zero, we now have two nodes with a degree 

of 1, while all the remaining nodes have a degree of 0. 
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When we add the second tie, there are two possible emergent structures.  Either we form a 

structure with two dyads and k - 4 isolates (the most likely outcome), or we create a 

structure with one 3-node “line” and k - 3 isolates.  With two ties, there are only two 

possible graph structures, and we can work out the probability of finding one or the other, 

if the process of adding ties is purely random.  There are also a couple of possible degree-

distributions.  If we observe the “3-line” structure, there is one node with a degree of 2, two 

with degree of 1, and all the rest have degree of zero.  If we observe the two-dyad graph, 

there are four nodes with degree of 1, and all the rest have a degree of zero. 

The numbers of basic structures in a graph (dyads, lines, triangles, etc.), and the shape of 

the degree distribution of the graph, change as the density of the graph increases. 

As we add the third tie, there is a new range of possibilities for emergent structures.  We 

could now have three dyads and remaining isolates, or we could have a line of 4 connected 

nodes and remaining isolates, or we could have a single closed triad and remaining isolates, 

etc.  The range of structures that could emerge as we add ties grows exponentially with the 

increasing density.  One way we can represent the possible graphs is as a “tree” (or first-

order Markov process).  Indeed, it is even possible to work out the probability of each 

particular kind of graph of a given density.  Each of the possible graphs also has an 

associated degree distribution.  In some graphs, there will be nodes with high degree and 

there will be considerable inequality in the degree distribution.  In other possible graphs, the 

degree distribution will have few “stars” (actors with high degree), and a more equal 

distribution. 

The important lesson from random graphs is that they display emergent structure (cliques, 

triads, lines, and unequal “social capital”) that can arise entirely by random and path-

dependent processes that do not depend on the attributes of the actors.  For any given 

level of density, there is a determinate probability distribution of structural properties of a 

graph based entirely on random processes. 
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Real social actors, we suspect, don’t build social networks by adding ties at random as just 

described.  But, there are two very interesting and useful things about this “random graph” 

model. 

First, to some degree at least, ties probably do form “at random” in social groups.  So, when 

we see a network that displays “lines” and “dyads” and “closed triads” and “4-lines” we need 

to be careful to not over-interpret what is going on.  In some graphs of a given density, it is 

possible to observe a single “leader” with very high degree – and most other nodes with 

very low degree – and this can happen by purely random processes.  So, when we look at a 

real social network, it is very helpful to remember that there is some chance that what we 

are seeing is, in fact, the realization of a purely random statistical process, rather than non-

random social organizing processes. 

Second, the random graph model is also the simplest baseline model of how emergent 

structure may be a “cause” in itself.  Sociologists have proposed a number of theories of 

how social networks form that depend on structure itself, rather than the attributes of 

individual actors.  “Preferential attachment” (Barabási & Albert, 1999) suggests that actors 

who have more ties (perhaps for entirely random reasons) may be more attractive as 

network partners and hence garner new partners at a preferential rate as density increases.  

In directed graphs, we might find a tendency for “reciprocity” so that if a tie already exists 

from A to B, it may well be that the next tie is more likely to emerge from B to A than any 

other possibility.  If A is already connected to B, and B is already connected to C, the 

“transitive” theory (Wasserman & Faust, 1994) suggests that an AC tie is more likely to 

develop next than any other random tie.  To judge whether any of these kinds of structural 

processes are actually present in an observed network, we need to know whether the 

observed numbers of “stars,” “reciprocated ties,” or “transitive triads” (for example) differ 

from what would happen entirely by random processes. 

The P1 model is a method of describing the structure of an observed network in terms of 

some of these basic structural processes.  The unit of observation, or case, in P1 (and the 

other stochastic models of graphs) is the dyad.  For a non-directed graph, each dyad can be 
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of one of two types:  null (no tie), or present (tie).  For a directed graph, each dyad is one of 

three types:  null (no tie), asymmetric (a tie from A to B, or from B to A, that is not 

reciprocated), or mutual (a reciprocated tie between A and B). 

The P1 model hypothesizes that the probability a given dyad is null, asymmetric, or mutual 

is the realization of four structural processes.  The fitted model assigns parametric values to 

these four processes.  The first key parameter is theta ( θ ), which reflects the effect of total 

density on the probability that any given dyad is asymmetric or mutual, instead of null.  The 

second key parameter is alpha ( α ), which reflects the out-degree or “expansiveness” of 

each node (there are as many alpha parameters as there are nodes).  Alpha, then, fits the 

out-degree distribution of the graph, and reflects individual differences in the propensity to 

seek ties.  The third key parameter is beta ( β ), which describes the “attractiveness,” or 

“popularity,” or “status” of nodes by modeling variation in the in-degree of nodes.  Again, 

there are as many beta parameters as there are nodes.  The fourth key parameter is rho ( ρ 

) which reflects the tendency toward reciprocity (that is, given that a dyad contains one tie, 

what is the probability that it contains a second?).  The P1 model does not directly address 

the question of closure or transitivity.  These structural aspects were subsequently addressed 

with additional P and ERG models. 

The parameters of the P1 model are estimated by fitting three simultaneous equations to 

the dyadic data (From Borgatti, et al. UCINET 6): 

𝑛𝑛𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑖𝑖 7.1 

  

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑖𝑖𝑒𝑒�𝜃𝜃+𝛼𝛼𝑖𝑖+𝛽𝛽𝑗𝑗� 7.2 

  

𝑚𝑚𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑖𝑖𝑒𝑒�𝜌𝜌+2𝜃𝜃+𝛼𝛼𝑖𝑖+𝛼𝛼𝑗𝑗+𝛽𝛽𝑖𝑖+𝛽𝛽𝑗𝑗� 7.3 

 

In the equations above, 𝑛𝑛𝑖𝑖𝑖𝑖 represents the probability that a given tie in a network will be 

null, 𝑎𝑎𝑖𝑖𝑖𝑖 represents the probability it will be asymmetric, and 𝑚𝑚𝑖𝑖𝑖𝑖 represents the probability 
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it will be mutual.  The model suggests that the probability a given dyad is null is equal to a 

constant, lambda.  Lambda is simply a scalar to assure that the probabilities of the various 

types sum to 1.0.  The probability that a dyad is asymmetric is a function of the overall 

graph density plus the expansiveness and attractiveness of the two nodes in the dyad.  The 

likelihood that a dyad is mutual (reciprocated ties) is a function of overall density, the 

expansiveness of both actors, the attractiveness of both actors, and an additional graph-

wide propensity (rho) for reciprocity.  Note that the model is log-additive (or multiplicative).  

That is, the effects of the out-degree distribution, in-degree distribution, and reciprocity 

multiply modify the effects of density. 

Figure 7.3 shows a portion of the results of running UCINET>Network>P1 on the 

asymmetric acquaintanceship ties in our social networks class at the end of the academic 

term (Wave 4). 

Figure 7.3.  UCINET’s P1 Analysis of Wave 4 (Asymmetric) Student Acquaintanceship 
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The first bit of information given in the output is the “badness of fit” (G-square) statistic and 

associated degrees of freedom.  As UCINET’s documentation suggests, it is difficult to 

interpret this value precisely because the distributional assumptions are unknown.  A rough 

comparison to the chi-square distribution with the same degrees of freedom suggests that 

the P1 model leaves significant residual variation (the residuals are available as output). 

Next, the estimated parameters of the model are given.  Theta (the density parameter) is     

-4.7643.  The exponentiated value is 0.0085.  Rho has a large positive value (7.6348), which 

suggests that if there is a single tie between two actors, the odds that there is a second 

(reciprocating) tie are over seven times as large as we would expect in a random graph of 

the same overall density, controlling for the out and in degrees of the members of the dyad.  

That is, there is a notable tendency toward reciprocation in acquaintanceship nominations 

which is hardly a surprising result. 

Last, the parameter for the expansiveness and attractiveness of each actor are shown.  We 

see, for example, that actor AD tends to initiate fewer ties than we would expect (alpha), but 

to receive more in-ties than we would expect in a random model (beta).  Examining the 

distribution of these parameters allows us to see the shape of the in-degree distribution and 

the out-degree distribution.  This describes the extent to which our graph displays unequal 

expansiveness and attractiveness, controlling for overall density and the observed tendency 

toward reciprocation.  

UCINET’s implementation of P1 is a purely descriptive tool to identify actors who are in-

stars, and out-stars, and to evaluate the magnitude of reciprocity (controlling for total 

density and the observed degree distributions).  To test the statistical significance of the 

parameters, one must generate a large number of random graphs of the same density, fit 

the P1 model, and develop sampling distributions of the alpha, beta, and rho parameters.  

This computationally intensive process is characteristic of the methodology of all stochastic 

graph models, and is best pursued in software specifically designed for the purpose (e.g. 

ERGM, PNET, Siena). 
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The P1 model itself has largely been supplanted by more recent developments (see 

particularly Harris, 2014 for an excellent history), that allow more complex structural effects, 

hypothesis testing, and the inclusion of actor attributes and dyadic attributes.  The P1 

model, though, represents a major step forward in modeling (i.e. predicting and testing 

hypotheses about) network structures.  Among the most important of the lessons of the P1 

model are: 

The idea of treating the dyad as the unit of analysis as a way of approaching the 

prediction of social structure. 

The use of the Markov approach to understand how the probabilities of random graphs 

with different structures emerge with increases in density. 

The recognition that the textures of social networks may be generated by structural 

processes, as well as the agency of actors (e.g. preferential attachment, reciprocity, and 

closure).  And, that these structural processes form a hierarchy of multiplicative (not 

additive) effects. 

 

7.4 Summary 

In this chapter, we introduced many of the key concepts used in models of network 

selection.  We discussed the ways that a network structure itself can become the dependent 

variable of predictive models.  We also introduced network self-organization processes, 

actor attribute processes, and exogenous context as three mechanisms guiding the 

evolution of network structures.   

Additionally, we outlined the importance of the triad census and how it can be computed in 

UCINet.  We concluded the chapter with an introduction to the P1 model and a discussion 

of the importance of modeling random network processes. 
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Chapter 8.  Models of Network Selection - ERGM and Multi-level 

Models 

 

*** COMING SOON *** 

 

Chapter 9.  Models of Network Dynamics and Co-evolution 

 

*** COMING SOON *** 
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